Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Investigation of the possibility for reducing agglomeration of aerosol nanoparticles by using the needle-plate corona charger

https://doi.org/10.17586/2220-8054-2018-9-4-491-495

Аннотация

The results of the research are given to show the possibility of reducing the agglomeration of aerosol nanoparticles using the needle-plate corona charger. It has been found that the charger fulfills the functions of an electrofilter-separator, precipitating large particles of agglomerates at a size more than 250 nm, leaving smaller non-agglomerated particles in the flow. Using the developed charger allows us to significantly reduce the agglomeration of particles at sufficiently low aerosol flow rates. As a result of changing the parameters of the charger (corona discharge current from 35 to 215 µA, aerosol flow through the charger from 33 to 250 l/min and the corona polarity), the mean particle size decreases more than in 1.5-fold.

Об авторах

A. Efimov
Moscow Institute of Physics and Technology
Россия


P. Arsenov
Moscow Institute of Physics and Technology
Россия


V. Ivanov
Moscow Institute of Physics and Technology
Россия


Список литературы

1. Kortshagen U.R., Sankaran R.M., Pereira R.N., et al. Nonthermal plasma synthesis of nanocrystals: Fundamental principles, materials, and applications. Chem. Rev., 2016, 116(18), P. 11061–11127.

2. Fissan H., Ristig S., Kaminski H., Asbach C., Epple M. Comparison of different characterization methods for nanoparticle dispersions before and after aerosolization. Anal. Methods, 2014, 6(18), P. 7324–7334.

3. Intra P. An Overview of Unipolar Charger Developments for Nanoparticle Charging. Aerosol Air Qual. Res., 2011.

4. M. Alonso Gamez, A. Hern ´ andez Sierra, F.J. Alguacil. Electrical charging of aerosol nanoparticles and sonne practical applications. ´ Cargado electrico de part ´ ´ıculas de aerosol en regimen cin ´ etico y algunas aplicaciones pr ´ acticas , 2003.

5. Efimov A.A., Ivanov V.V., Bagazeev A.V., et al. Generation of aerosol nanoparticles by the multi-spark discharge generator. Tech. Phys. Lett., 2013, 39(12), P. 1053–1056.

6. Efimov A., Lizunova A., Sukharev V., Ivanov V. Synthesis and Characterization of TiO2, Cu2O and Al2O3 Aerosol Nanoparticles Produced by the Multi-Spark Discharge Generator. Korean J. Mater. Res., 2016, 26(3), P. 123–129.

7. Qi C., Asbach C., Shin W.G., Fissan H., Pui D.Y.H. The Effect of Particle Pre-Existing Charge on Unipolar Charging and Its Implication on Electrical Aerosol Measurements. Aerosol Sci. Technol., 2009, 43(3), P. 232–240.

8. Pfafflin J.R., Ziegler E.N. Encyclopedia of Environmental Science and Engineering: A-L. CRC Press, 2006.


Рецензия

Для цитирования:


 ,  ,   . Наносистемы: физика, химия, математика. 2018;9(4):491-495. https://doi.org/10.17586/2220-8054-2018-9-4-491-495

For citation:


Efimov A.A., Arsenov P.V., Ivanov V.V. Investigation of the possibility for reducing agglomeration of aerosol nanoparticles by using the needle-plate corona charger. Nanosystems: Physics, Chemistry, Mathematics. 2018;9(4):491-495. https://doi.org/10.17586/2220-8054-2018-9-4-491-495

Просмотров: 7


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)