Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Promising directions of increasing the properties of steel

https://doi.org/10.17586/2220-8054-2018-9-4-500-506

Abstract

The study of regularities of the formation and evolution of nonmetallic inclusions and phase precipitates in modern structural steels has been carried out. It has been shown that the formation of several types of complex nonmetallic inclusions results in a substantial increase in the complex of steel properties and neutralizing the negative influence of impurities while a reduction in costs. An even more significant improvement in the properties of steel can be achieved by controlling the characteristics of carbide, carbonitride, and other types of phase precipitates. Herewith, ferritic steels are the most promising. The previously unreachable complex of indicators of difficult to combine service properties of these steels has been achieved by the formation of a homogeneous fine-dispersed microstructure and a volumetric system of primarily interphase precipitates. Based on established principles, effective technologies for the production of a wide range of various types of steels have been developed.

About the Authors

A. I. Zaitsev
Bardin Central Research Institute of Ferrous Metallurgy
Russian Federation

Radio str., 23/9, build.2, Moscow, 105005



A. V. Koldaev
Bardin Central Research Institute of Ferrous Metallurgy
Russian Federation

Radio str., 23/9, build.2, Moscow, 105005



N. A. Arutyunyan
Department of Chemistry, Lomonosov Moscow State University
Russian Federation

Leninskie Gory 1-3, GSP-1, Moscow, 119991



References

1. Zaitsev A.I. Prospective directions for development of metallurgy and materials science of steel. Pure Appl. Chem., 2017, 89(10), P. 1553–1565.

2. Zaitsev A.I., Kosyrev K.L., Rodionova I.G. Modern trends of development of metallurgical technology for achievement of a high complex of service properties and qualitative indicators of steel. Probl. Chern. Met. Materialoved, 2012, 3, P. 5–13.

3. Shakhpazov E.Kh., Zaitsev A.I., Rodionova I.G., Semernin G.V. Key trends in the development of a metallurgical technology to meet the growing steel quality requirements. Russ. Metall., 2011, 2011(12), P. 1162–1170.

4. Zaitsev A.I., Kraposhin V.S., Rodionova I.G., Semernin G.V., Talis A.S. Complex nonmetallic inclusions and steel properties. Metallurgizdat, Moscow, 2015, 276 p.

5. Zaitsev A.I., Rodionova I.G., Baklanova O.N., Kryukova A.I., Udod K.A., Mishnev P.A., Mitrofanov A.V. Nonmetallic inclusions and promising principles for Improving the set of properties and quality characteristics of steel. Metallurgist, 2015, 58(11), P. 983–991.

6. Zaitsev A.I., Stepanov A.B., Karamysheva N.A., Rodionova I.G. Advancement of the properties of structural steels by creating an optimum form of existence of impurities and nonmetallic inclusions. Met. Sci. Heat Treat., 2016, 57(9), P. 531–538.

7. Shakhpazov E.Kh., Zaitsev A.I., Rodionova I.G., Shaposhnikov N.G. Nanotechnologies for the production of mass high-quality steels based on the management of nanosized precipitates of nonmetallic excess phases. Probl. Chern. Met. Materialoved., 2008, 4, P. 112–122.

8. Zaitsev A.I., Rodionova I.G., Semernin G.V., Shaposhnikov N.G., Kazankov A.Yu. New types of unfavorable nonmetallic inclusions based on MgO–Al2O3 and metallurgical factors governing their content in metal. Part 1. Reasons and mechanisms for formation in steel of nonmetallic inclusions based on alumina magnesia spinel. Metallurgist, 2011, 55(1-2), P. 107–115.

9. Zaitsev A.I., Rodionova I.G., Baklanova O.N., Udod K.A., Grishin A.V., Esiev T.S., Ryahovskih I.V., Kohtev S.A., Lutsenko A.N., Nemtinov A.A., Mitrofanov A.V. Investigation of the influence of metallurgical factors on the resistance of modern tube steels against corrosion cracking. Probl. Chern. Met. Materialoved., 2013, 1, P. 54–69.

10. Rodionova I.G., Zaitsev A.I., Baklanova O.N., Golovanov A.V., Endel N.I., Shapovalov E.T., Semernin G.V. Modern approaches to improve the corrosion resistance and operational reliability of steels for oilfield pipelines. Metallurgizdat, Moscow, 2012, 172 p.

11. Zaitsev A.I., Rodionova I.G., Shaposhnikov N.G., Mogutnov B.M., Dunaev S.F., Mishnev P.A., Adigamov R.R. Development of scientific foundations for efficient technologies for the production of cold-rolled high-strength low-alloyed steels by controlling the type, quantity and morphology of precipitations of nonmetallic excess phases. Probl. Chern. Met. Materialoved., 2012, 1, P. 75–85.

12. Zaitsev A.I., Rodionova I.G., Yashchuk S.V., Mishnev P.A., Adigamov R.R., Bykova Yu.S., Efimova T.M. Development of scientific and technological fundamentals of production of automobile body sheet steels. Chernaya Metllurgiya, 2013, 3, P. 89–109.

13. Fonstein N. Advanced high strength sheet steels: physical metallurgy, design, processing and properties. Springer International Publishing Switzerland, 2015, 396 p.

14. Frisk K., Borggren U. Precipitation in microalloyed steel by model alloy experiment and thermodynamic calculation. Metall. and Mater. Trans. A, 2016, 47(10), P. 4806–4817.

15. Zaitsev A.I., Rodionova I.G., Pavlov A.A., Shaposhnikov N.G., Grishin A.V. Effect of composition, structural state, and manufacturing technology on service properties of high-strength low-carbon steel main bimetal layer. Metallurgist, 2015, 59(7), P. 684–692.

16. Seto K., Funakawa Y., Kaneko S. Hot rolling high strength steels for suspension and chassis parts “NANOHITEN” and “BTH steels”. JFE Techn. Report, 2007, 10, P. 19–25.

17. Funakawa Y., Shiozaki T., Tomita K., Yamamoto T., Maeda E. Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides. ISIJ Int., 2004, 44(11), P. 1945–1951.

18. Deng X., Fu T., Wang Z., Liu G., Wang G., Misra R.D.K. Extending the boundaries of mechanical properties of Ti-Nb low-carbon steel via combination of ultrafast cooling and deformation during austenite-to-ferrite transformation. Met. Mater. Int., 2017, 23(1), P. 175–183.

19. Rijkenberg A., Blowey A., Bellina P., Wooffindin C. Advanced high stretch-flange formability steels for chassis & suspension applications. Proceedings of the Conference SCT2014 (4-th International Conference on Steels in Cars and Trucks), Braunschweig, Germany, 15-19 June 2014, P. 426–433.

20. Kosaka N., Funakawa Y. Work hardening in ferritic steel containing ultra-fine carbides. ISIJ Int., 2016, 56(2), P. 311–318.

21. Zhang K., Li Z.-D., Sun X.-J., Yong Q.-L., Yang J.-W., Li Y.-M., Zhao P.-L. Development of Ti-V-Mo complex microalloyed hot-rolled 900-MPa-grade high-strength steel. Acta Metall. Sin. Engl., 2015, 28(5), P. 641–648.

22. Wang Z., Sun X., Yang Z., Yong Q., Zhang C., Li Z., Weng Y. Carbide precipitation in austenite of a Ti-Mo-containing low-carbon steel during stress relaxation. Mater. Sci. Engin. A, 2013, 573, P. 84–91.

23. Kim Y.W., Hong S-G., Huh Y-H, Lee C.S. Role of rolling temperature in the precipitation hardening characteristics of Ti-Mo microalloyed hot-rolled high strength steel. Mater. Sci. Engin. A, 2014, 615, P. 255–261.

24. Bu F.Z., Wang X.M., Yang S.W., Shang C.J., Mirsa R.D.K. Contribution of interphase precipitation on yield strength in termomechanically simulated Ti-Nb and Ti-Nb-Mo microalloyed steels. Mater. Sci. Engin. A, 2015, 620, P. 22–29.

25. Zajac S. Precipitation of microalloy carbo-nitrides prior, during and after γ/α transformation. Mater. Sci. Forum., 2005, 500, P. 75–86.

26. Cheng L., Caai Q-W., Xie B-S., Ning Z., Zhou X-C., Li G-S. Relationships among microstroucture, precipitation and mechanical properties in different depths of Ti-Mo low carbon low alloy steel plate. Mater. Sci. Engin. A, 2016, 651, P. 185–191.

27. Zaitsev A.I., Baklanova O.N., Koldaev A.V., Grishin A.V., Rodionova I.G., Yashchuk S.V., Lyasotskii I.V. Microstructure and property formation for high-strength low-carbon steels microalloyed with titanium and molybdenum. Metallurgist, 2016, 60(5), P. 492–498.

28. Shaposhnikov N.G., Koldaev A.V., Zaitsev A.I., Rodionova I.G., D’yakonov D.L., Arutyunyan N.A. Regularities of titanium carbide precipitation in low carbon Ti-Mo-microalloyed high strength steels. Metallurgist, 2016, 60(8), P. 810–816.

29. Wang Z., Yong Q., Sun X., Yang Z., Li Z., Zhang C., Weng Y. An analytical model for kinetics of stren-induced precipitation in titanium micro-alloyed steels. ISIJ Int., 2012, 52(9), P. 1661–1669.

30. Koldaev A.V., D’yakonov D.L., Zaitsev A.I., Arutyunyan N.A. Kinetics of the formation of nanosize niobium carbonitride precipitates in low-alloy structural steels. Metallurgist, 2017, 60(9), P. 1032–1037.


Review

For citations:


Zaitsev A.I., Koldaev A.V., Arutyunyan N.A. Promising directions of increasing the properties of steel. Nanosystems: Physics, Chemistry, Mathematics. 2018;9(4):500-506. https://doi.org/10.17586/2220-8054-2018-9-4-500-506

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)