Universal mechanism of tetrahedral metal cluster formation in structures with breathing pyrochlore sublattices
https://doi.org/10.17586/22208054201785677687
Abstract
A universal mechanism of tetrahedral metal cluster formation in crystal with geometrically frustrated pyrochlore sublattices is pr oposed. It has been shown that the critical irreducible representation , which generated the formation of metal clusters in noncentrosymmetrical F4 3mphases from high symmetry phases with Fd3 m space group, is a one dimensional irreducible representation 11(4(A2u)) (in Kovalev notation). The structural theory of metal cluster formation based on group theoretical calculations was published earlier for the case of Aordered spinel. In this work, the theory is generalized in the case of any high symmetry Fd3 m structures that include pyrochlore sublattices. We presented a brief review of such structures and mechanisms of the tetrahedral metal cluster formation. The existence of so called “breathing” pyrochlore sublattices in ordered phases is predicted theoretically. The groups of atoms, between which bond clusters, are found. These groups of atoms define electron correlation effects. Examples of tetrahedral metal cluster formation in ordered spinels, ordered lacunar spinels, ordered Laves phases (MgCu4Sn structural type) and ordered pyrochlore are considered. The theoretical results are confirmed by the known experimental facts.
Keywords
About the Authors
M. V. TalanovRussian Federation
RostovonDon
V. M. Talano
Russian Federation
Novocherkassk
References
1. Sadoc J.F., Mosseri R. Geometrical Frustration. Cambridge: Cambridge University Press, 2006, 319 p.
2. Lacroix C., Mendels P., Mila F. Introduction to Frustrated Magnetism. Materials, Experiments, Theory. SpringerVerlag, Berlin, 2011, 128 p.
3. Ramirez A.P. Handbook on Magnetic Materials. Amsterdam: Elsevier Science, 2001, 13, 423 p.
4. Anderson P. Ordering and Antiferromagnetism in Ferrites. Phys. Rev., 1956, 102, P. 1008–1013.
5. Bernal J.D., Fowler R.H. A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions. J. Chem. Phys., 1933, 1, P. 515–548.
6. Pauling L.J. The Structure and Entropy of Ice and of Other Crystals with Some Randomness of Atomic Arrangement. Am. Chem. Soc., 1935, 57, P. 2680–2684.
7. Kovalev O.V. Representations of Crystallographic Space Groups. Irreducible Representations, Induced Representations and Corepresentations. London, Taylor and Francis Ltd., 1993, 390 p.
8. Talanov V.M., Shirokov V.B. Tilting structures in spinels. Acta Cryst. A, 2012, 68, P. 595–606.
9. Talanov V.M., Shirokov V.B. Atomic order in spinel structure a grouptheoretical analysis. Acta Cryst. A, 2014, 70, P. 49–63.
10. Talanov V.M., Shirokov V.B., Talanov M.V. Unique atom hyperkagome order in Na4Ir3O8 and in lowsymmetry spinel modifications. Acta Cryst. A, 2015, 71, P. 301–318.
11. Talanov V.M. Anion ordering in spinels. Phys. Stat. sol. (a), 1989, 115, K1–K4.
12. Talanov V.M. Calculation of Structural Parmeters of Spinels. Phys. Stat. sol. (a), 1981, 106, P. 99–106.
13. Talanov V.M. Theoretical Grounds of the Natural Classification of Structure Types. Kristallographiya, 1996, 44 (6), P. 979997; Crystallogr. Rep., 1996, 44, P. 929–946.
14. Talanov V.M. Structural Mechanism of Cluster Formation in Ordered Chalcogenide Spinels. Phys. Chem. Glass, 2005, 31, P. 323–325.
15. Talanov M.V., Shirokov V.B., Talanov V.M. Phenomenological thermodynamics and the structure formation mechanism of the CuTi2S4 rhombohedral phase. Phys. Chem. Chem. Phys., 2016, 18, P. 10600–10606.
16. Talanov V.M. Structural mechanism of the ordering of ions in tetrahedral holes in spinels. J. Struct. Chem., 1986, 2, P. 172–176.
17. Okamoto Y., Nilsen G.J., Attfield J.P., Hiroi Z. Breathing Pyrochlore Lattice Realized in ASite Ordered Spinel Oxides LiGaCr4O8 and LiInCr4O8. Phys. Rev. Letters, 2013, 110, 097203(1–5).
18. Plumier R., Sougi M., Lecomte M. Observation of an unusual range magnetic ordering in spinel Cu1=2In1=2Cr2S4. Phys. Rev. Letters A, 1977, 60, P. 341–344.
19. Plumier R., Lecomte M., MiedanGros A., Sougi M. Observation of a first order macro to microdomain transition in chalcogenide spinel Ag1=2In1=2Cr2S4. Physica B, 1977, 86–88, P. 1360–1362.
20. NaucielBloch M., Plumier R. Magnetic structure in spinel Bsite lattice with ordered diamagnetic ions at the Asites. Solid State Communication, 1971, 9, P. 223–226.
21. Federov V.E., Mironov Y.V., et al. Re4S4Te4. Acta Crystallogr. C, 1996, 52, P. 1065–1067.
22. Fedorov V.Y., Mironov Y.V., et al. Cluster Transition Metal Chalcogenide Halides. Russ. Chem. Rev., 2007, 76, P. 529–552.
23. Brasen D., Vandenberg J.M., et al. Magnetic and Crystallographic Properties of Spinels of the Type AxB2X4 where A = Al, Ga, and B = Mo, V, Cr. J. Solid State Chemistry, 1975, 13, P. 298–303.
24. Barz H. New ferromagnetic molybdenum spinels. Mater. Res. Bull., 1973, 8, P. 983–988.
25. Okuda K., Noguchi S., Asano M., Endo S. Phase transitions of Mocluster compounds GaO:5(Mo,Re)2S4. J. Magn. Magnetic Materials, 1990, 90 & 91, P. 148–150.
26. Ben Yaich H., Jegadcn J.C., et al. Nouveaux chalcog´enures et chalcohalog´enures `a clusters t´etra´edriques Nb4 ou Ta4. J. LessCommon Met., 1984, 102, P. 9–22.
27. Aminov T.G., Shabunina G.G., Busheva E.V., Novotortsev V.M. Magnetic properties of Cox(Cu0:5In0:5)1xCr2S4 solid solutions. Russian Journal of Inorganic Chemistry, 2016, 61 (4), P. 461–469.
28. Besnard C., Svensson C., Stahl K., Siegrist T. Re4As6S3, a thiospinelrelated cluster system. J. Solid State Chemistry, 2003, 172, P. 446–450.
29. Fedorov V.E., Mironov Yu.V., et al. Chalcogenide clusters of Group 5 – 7 metals. Russian Chemical Reviews, 2007, 76, P. 529–552.
30. Fedorov V.E., Mironov Yu.V., Fedin V.P., Mironov Yu.I. Re4S4Te4. A new mixed rhenium chalcogenide containing a tetrahedral Re4 cluster. J. Struct. Chem., 1994, 35 (1), P. 146–147.
31. Schulz Lang E., Abram U., Strahle J. Synthese und Struktur von Re4(3–Te)4(TeBr2)4Br8. Z. Anorg. Allg. Chem., 1996, 622, P. 251–253.
32. Fedorov V.E., Naumov N.G., et al. Inorganic Coordination Polymers Based on Chalcocyanide Cluster Complexes. J. Struct. Chem., 2002, 43, P. 669–684.
33. Novotortsev V.M., Kalinnikov V.T., Aminov T.G. Spin glass state in multinary chromium compounds. Russian Journal of Inorganic Chemistry, 2005, 50, P. 54–80.
34. Pocha R., Johrendt D., Ni B., AbdElmeguid M.M. Crystal Structures, Electronic Properties, and PressureInduced Superconductivity of the Tetrahedral Cluster Compounds GaNb4S8, GaNb4Se8, and GaTa4Se8. J. Am. Chem. Soc., 2005, 127 (24), P. 8732–8740.
35. AbdElmeguid M.M., Ni B., et al. Transition from Mott insulator to superconductor in GaNb4Se8 and GaTa4Se8 under high pressure. Phys. Rev. Lett., 2004, 93, 126403(1–4).
36. Ta Phuoc V., Vaju C.,et al. Optical conductivity measurements of GaTa4Se8 under high pressure: Evidence of a bandwidthcontrolled insulatortometal Mott transition. Phys. Rev. Lett., 2013, 110, 037401(1–5).
37. Camjayi A., Acha C., et al. Firstorder insulatortometal Mott transition in the paramagnetic 3D system GaTa4Se8. Phys. Rev. Lett., 2014, 113, 086404(1–5).
38. Dorolti E., Cario L., et al. Halfmetallic ferromagnetism and large negative magnetoresistance in the new lacunar spinel GaTi3VS8. J. Am. Chem. Soc., 2010, 132, P. 5704–5710.
39. Kim H.S., Im J., Han M.J., Jin H. Spinorbital entangled molecular jeff states in lacunar spinel compounds. Nat. Commun., 2014, 5, P. 3988–3995.
40. Dubost V., Cren T., et al. Resistive switching at the nanoscale in the Mott insulator compound GaTa4Se8. Nano Lett., 2013, 13, P. 3648– 3653.
41. Stoliar P., Cario L., et al. Universal electricfielddriven resistive transition in narrowgap Mott insulators. Adv. Mater., 2013, 25, P. 3222–3226.
42. Guiot V., Cario L., et al. Avalanche breakdownin GaTa4Se8xTex narrowgap Mott insulators. Nature Commun., 2013, 4, P. 1722–1728.
43. Singh K., Simon C., et al. Orbital orderingdriven multiferroicity and magnetoelectric coupling in GeV4S8. Phys. Rev. Lett., 2014, 113, 137602(1–6).
44. K´ezsm´arki S. Bord´acs Milde P., et al. N´eeltype skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8. Nat. Mater., 2015, 14, P. 1116–1122.
45. Linsinger S., Eul M., et al. Structure, homogeneity ranges, magnetic, and electrical properties of the ordered Laves phases ReNi4Mg with MgCu4Sn type structure. Intermetallics, 2011, 19, P. 1579–1585.
46. Frank F.C., Kasper J.S. Complex Alloy Structures Regarded as Sphere Packings. I. Definitions and Basic Principles. Acta Crystallogr., 1958, 11, P. 184–190.
47. Frank F.C., Kasper J.S. Complex alloy structures regarded as sphere packings. II. Analysis and classification of representative structures. Acta Crystallogr., 1959, 12, P. 483–499.
48. Emsley J. The Elements. Oxford University Press, Oxford, 1989, 256 p.
49. Nesper R. Bonding patterns in intermetallic compounds. Angew. Chem., 1991, 30, P. 789–817.
50. Johnston R.L., Hoffmann R. StructureBonding Relationships in the Laves Phases. Z. Anorg. Allg. Chem., 1992, 616, P. 105–120.
51. Nesper R., Miller G.J. A covalent view of chemical bonding in Laves phases CaLixAl2x. J. Alloys Compd., 1993, 197, P. 109–121.
52. Hanawa M., Muraoka Y., et al. Superconductivity at 1 K in Cd2Re2O7. Phys. Rev. Lett., 2001, 87, 187001(1–4).
53. Yamaura J.I., Yonezawa S., Muraoka Y., Hiroi Z. Crystal structure of the pyrochlore oxide superconductor KOs2O6. Journal of Solid State Chemistry, 2006, 179, P. 336–340.
54. Shah J.S., Hahn W.C. Material characterization of thick film resistor pastes. IEEE Trans. Compon. Hybrides and Manuf. Technol., 1978, 303 P. 383–385.
55. Longo J.M., Raccah P.M., Goodenough J.B. Pb2M2O7x (M = Ru, Ir, Re) – preparation and properties of oxygen deficient pyrochlores. Mat. Res. Bull., 1969, 4, P. 191–202.
56. Beyerlein R.A., Horowitz H.S., et al. Neutron diffraction investigation of ordered oxygen vacancies in the defect pyrochlores, Pb2Ru2O6:5 and PbT1Nb2O6:5. Solid State Chem., 1984, 51, P. 253–266.
57. Verwey E.J.W. Electronic Conduction of Magnetite (Fe3O4) and its Transition Point at Low Temperatures. Nature (London), 1939, 144, P. 327–328.
58. Senn M.S., Wright J.P., Attfield J.P. Charge order and threesite distortions in the Verwey structure of magnetite. Nature (London), 2012, 481, P. 173–176.
59. Kondo S., Johnston D.C., et al. LiV2O4: A Heavy Fermion Transition Metal Oxide. Phys. Rev. Lett., 1997, 78, P. 3729–3732.
60. Horibe Y., Shingu M., et al. Spontaneous Formation of Vanadium Molecules in a Geometrically Frustrated Crystal: AlV2O4. Phys. Rev. Lett., 2006, 96, 086406(1–4).
61. Samson S. The Crystal Structure of the Intermetalic Compound Mg3Cr2AI18. Acta Cryst., 1958, 11, P. 851–857.
Review
For citations:
Talanov M.V., Talano V.M. Universal mechanism of tetrahedral metal cluster formation in structures with breathing pyrochlore sublattices. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(5):677-687. https://doi.org/10.17586/22208054201785677687