Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Capillary filling of carbon nanotubes by BiCl3: TEM and MD insight

https://doi.org/10.17586/2220-8054-2018-9-4-521-531

Abstract

Among numerous trichlorides, the melt of BiCl3 is a distinctly molecular liquid with a relatively low melting point, yet, with a high surface tension. Therefore, the attractiveness of a simple capillary filling technique for fabrication of nanosized BiCl3 by dispersion within a nanocapillary needs a special investigation. Here, we report the successful synthesis and the transmission electron microscopy characterization of the hybrids consisting of multi-walled carbon nanotubes and endohedral BiCl3 crystallites. The main peculiarities of imbibition into carbon nanotubes and an intricate internal organization of molten BiCl3 are established using the developed 4-site force-field model of BiCl3 and consequent molecular dynamics simulations at nanosecond time scale.

About the Authors

E. A. Anumol
International Iberian Nanotechnology Laboratory (INL)
Portugal

Nanostructured Materials Group, Department of Advanced Electron Microscopy, Imaging and Spectroscopy

Braga



F. L. Deepak
International Iberian Nanotechnology Laboratory (INL)
Portugal

Nanostructured Materials Group, Department of Advanced Electron Microscopy, Imaging and Spectroscopy

Braga



A. N. Enyashin
Institute of Solid State Chemistry UB RAS
Russian Federation

Ekaterinburg



References

1. Pederson M.R., Broughton J.Q. Nanocapillarity in Fullerene Tubules. Physical Review Letters, 1992, 69, P. 2689–2692.

2. Ajayan P.M., Iijima S. Capillarity-induced filling of carbon nanotubes. Nature, 1993, 361, P. 333–334.

3. Sloan J., Luzzi D.E., Kirkland A.I., Hutchison J.L., Green M.L. Imaging and Characterization of Molecules and One-Dimensional Crystals Formed within Carbon Nanotubes. MRS Bulletin, 2004, 29, P. 265–271.

4. Eliseev A.A., Kharlamova M.V., Chernysheva M.V., Lukashin A.V., Tretyakov Yu.D., Kumskov A.S., Kiselev N.A. Preparation and properties of single-walled nanotubes filled with inorganic compounds. Russian Chemical Reviews, 2009, 78, P. 833–854.

5. Gautam U.K., Costa P.M.F.J., Bando Y., Fang X., Li L., Imura M., Golberg D. Recent developments in inorganically filled carbon nanotubes: successes and challenges. Sci. Technol. Adv. Mater., 2010, 11, P. 054501

6. Hong S.Y., Kreizman R., Rosentsveig R., Zak A., Sloan J., Enyashin A.N., Seifert G., Green M.L.H., Tenne R. One- and Two-Dimensional Inorganic Crystals inside Inorganic Nanotubes. European Journal of Inorganic Chemistry, 2010, P. 4233–4243.

7. Cabana L., Ballesteros B., Batista E., Magen C., Arenal R., Oro-Sole J., Rurali R., Tobias G. Synthesis of PbI2 Single-Layered Inorganic Nanotubes Encapsulated Within Carbon Nanotubes. Advanced Materials, 2014, 26, P. 2016–2021.

8. Sandoval S., Pach E., Ballesteros B., Tobias G. Encapsulation of two-dimensional materials inside carbon nanotubes: Towards an enhanced synthesis of single-layered metal halides. Carbon, 2017, 123, P. 129–134.

9. Fidiani E., Costa P.M.F.J., Wolter A.U.B., Maier D., Buechner B., Hampel S. Magnetically Active and Coated Gadolinium-Filled Carbon Nanotubes. The Journal of Physical Chemistry C, 2013, 117, P. 16725–16733.

10. Anumol E.A., Enyashin A.N., Deepak F.L. Single Walled BiI3 Nanotubes Encapsulated within Carbon Nanotubes. Scientific Reports, 2018, 8, P. 10133.

11. Sloan J., Kirkland A.I., Hutchison J.L., Green M.L.H. Integral atomic layer architectures of 1D crystals inserted into single walled carbon nanotubes. Chemical Communications, 2002, P. 1319–1332.

12. Friedrichs S., Falke U., Green M.L.H. Phase Separation of LaI3 inside Single-Walled Carbon Nanotubes. ChemPhysChem, 2005, 6, P. 300–305.

13. Fedoseeva Y.V., Orekhov A.S., Chekhova G.N., Koroteev V.O., Kanygin M.A., Senkovskiy B.V., Chuvilin A., Pontiroli D., Ricco M., Bulusheva L.G., Okotrub A.V. Single-Walled Carbon Nanotube Reactor for Redox Transformation of Mercury Dichloride. ACS Nano, 2017, 11, P. 8643–8649.

14. Nie C., Galibert A.-M., Soula B., Datas L., Sloan J., Flahaut E., Monthiox M. The unexpected complexity of filling double-wall carbon nanotubes with nickel (and iodine) 1D nanocrystals. IEEE Transactions on Nanotechnology, 2017, 16, P. 759–766.

15. Batra N., Anumol E.A., Smajic J., Enyashin A.N., Deepak F.L., Costa P.M.F.J. Morphological Phase Diagram of a Metal Halide Encapsulated in Carbon Nanotubes. The Journal of Physical Chemistry C, 2018 (submitted).

16. Hong S.Y., Tobias G., Al-Jamal K.T., Ballesteros B., Ali-Boucetta H., Lozano-Perez S., Nellist P.D., Sim R.B., Finucane C., Mather S.J., Green M.L.H., Kostarelos K., Davis B.G. Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging. Nature Materials, 2010, 9, P. 485–490.

17. Spinato C., de Garibay A.P.R., Kierkowicz M., Pach E., Martincic M., Klippstein R., Bourgognon M., Wang J.T.-W., Menard-Moyon C., Al-Jamal K.T., Ballesteros B., Tobias G., Bianco A. Design of antibody-functionalized carbon nanotubes filled with radioactivable metals towards a targeted anticancer therapy. Nanoscale, 2016, 8, P. 12626–12638.

18. Adya A.K., Takagi R., Gaune-Escard M. Unravelling the Internal Complexities of Molten Salts. Zeitschrift fur Naturforshung A ¨ , 1998, 53, P. 1037–1048.

19. Ravi K., Krishnakumar B., Swaminathan M. BiCl3-loaded montmorillonite K10: a new solid acid catalyst for solvent-free synthesis of bis(indolyl)methanes. Research on Chemical Intermediates, 2015, 41, P. 5353–5364.

20. Patil V.D., Sutar N.R., Patil K.P., Giddh P. BiCl3 - an eco-friendly catalyst for an efficient synthesis of benzoxazoles at room temperature. Chemistry of Heterocyclic Compounds, 2015, 51, P. 1019–1022.

21. Diemer R., Dittes U., Nuber B., Seifried V., Opferkuch W., Keppler B.K. Synthesis, Characterization and Molecular Structures of some Bismuth(III) Complexes with Thiosemicarbazones and Dithiocarbazonic Acid Methylester Derivatives with Activity against Helicobacter Pylori. Metal-Based Drugs, 1995, 2, P. 271–292.

22. Marcus Y. Ionic Liquid Properties: From Molten Salts to RTILs. Springer International Publishing, 2016, 244 p. ISBN 978-3-319-30313-0

23. Friedman R.M., Corbett J.D. On the Synthesis and Crystal Structure of Dodecabismuth Tetradecachloride, Bi12Cl14. Inorganica Chimica Acta, 1973, 7, P. 525–527.

24. Bartl H. Meßzeitersparnis durch Profilauswertung bei der Registrierung von Neutroneneinkristallreflexen. Die Kristallstruktur von Wismuttrichlorid, BiCl3. Fresenius’ Zeitschrift fur analytische Chemie ¨ , 1982, 312, P. 17–18.

25. Rappe A.K., Casewit C.J., Colwell K., Goddard III W., Skiff W., UFF, a Full Periodic Table Force Field for Molecular Mechanics and ´ Molecular Dynamics Simulations. Journal of American Chemical Society, 1992, 114, P. 10024–10035.

26. Imperatori P., Ferro D., Piacente V. Sublimation study of BiCl3 and of BiBr3. The Journal of Chemical Thermodynamics, 1982, 14, P. 461–472.

27. Clay A.T., Kuntz C.M., Johnson K.E., East A.L.L. The origin of the conductivity maximum in molten salts. I. Bismuth chloride. Journal of Chemical Physics, 2012, 136, P. 124504.

28. Humphrey W., Dalke A., Schulten K. VMD: Visual molecular dynamics. Journal of Molecular Graphics, 1996, 14, P. 33–38.

29. Toke O., Hargittai M. Molecular Structure of Bismuth Trichloride from Combined Electron Diffraction and Vibrational Spectroscopic ¨ Study. Structural Chemistry, 1995, 6, P. 127–130.

30. Denchik E., Nyburg S.C., Ozin G.A., Szymanski J.T. Raman Spectra of Gaseous, Liquid, and Solid Bismuth Trichloride: Resonance Fluorescence Spectra of gaseous BiCl and BiBr. Journal of the Chemical Society A, 1971, 0, P. 3157–3159.

31. Deepak F.L., Enyashin A.N. Capillary Imbibition of Gadolinium Halides into WS2 Nanotubes: a Molecular Dynamics View. Israel Journal of Chemistry, 2017, 57, P. 501–508.

32. Enyashin A.N., Kreizman R., Seifert G. Capillary Imbibition of PbI2 Melt by Inorganic and Carbon Nanotubes. The Journal of Physical Chemistry C, 2009, 113, P. 13664–13669.

33. Anumol E.A., Enyashin A.N., Batra N.M., Costa P.M.F.J., Deepak F.L. Structural and chemical analysis of gadolinium halides within WS2 nanotubes. Nanoscale, 2016, 8, P. 12170.

34. Goldbart O., Cohen S.R., Kaplan-Ashiri I., Glazyrina P., Daniel Wagner H., Enyashin A., Tenne R. Diameter-dependent wetting of tungsten disulfide nanotubes. Proceedings of the National Academy of Sciences, 2016, 113, P. 13624–13629.


Review

For citations:


Anumol E.A., Deepak F.L., Enyashin A.N. Capillary filling of carbon nanotubes by BiCl3: TEM and MD insight. Nanosystems: Physics, Chemistry, Mathematics. 2018;9(4):521-531. https://doi.org/10.17586/2220-8054-2018-9-4-521-531

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)