Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Effect of high pressures and high temperatures on the structure of nanostructured titanium monoxide

https://doi.org/10.17586/2220-8054-2018-9-4-544-548

Аннотация

The structure of nanostructured titanium monoxide TiO0.98 containing structural vacancies in two sublattices simultaneously has been modified via thermobaric annealing. Analysis of the experimental data on thermobaric synthesis of nanostructured TiO0.98 with cubic B1 type structure at temperatures 573 – 2273 K and pressure 6 GPa revealed that a transition from the cubic B1 (sp. gr. Fm¯3m) phase to the trigonal Ti2O3 (sp. gr. R¯3c) phase takes place in the nanostructured monoxide as a result of high pressures and high temperatures. The first-principle calculations of the cohesive energy and electronic structure show that the trigonal phase with space group R¯3c is energetically favorable compared to the cubic phase of the same composition TiO3/2 and the orthorhombic ordered Ti2O3 (sp. gr. Immm) phase.

Об авторах

А. Valeeva
Institute of Solid State Chemistry UB RAS; Ural Federal University named after the first President of Russia B. N. Eltsin
Россия


М. Kostenko
Institute of Solid State Chemistry UB RAS
Россия


A. Pfitzner
Institute of Inorganic Chemistry, Regensburg University
Германия


А. Rempel
Institute of Solid State Chemistry UB RAS; Ural Federal University named after the first President of Russia B. N. Eltsin
Россия


Список литературы

1. Gusev A.I., Rempel A.A., Magerl A.J. Disorder and Order in Strongly Nonstoichiometric Compounds: Transition Metal Carbides, Nitrides and Oxides. Springer: Berlin-Heidelberg-New York, 2001.

2. Rempel A.A., Valeeva A.A. Thermodynamics of atomic ordering in nonstoichiometric transition metal monoxides. Mend. Communication, 2010, 20, P. 101–103.

3. Kostenko M.G., Valeeva A.A., Rempel A.A. Relationship between short- and long-range orders in nonstoichiometric titanium monoxide TiOy. JETP, 2010, 111, P. 786–795.

4. Kostenko M.G., Rempel A.A., Lukoyanov A.V. Internal energy and parameters of the order–disorder phase transition in titanium monoxide TiOy. JETP, 2013, 116, P. 945–951.

5. Kostenko M.G., Rempel A.A. Electrostatic stabilization of an ordered phase in titanium monoxide. Phys. Sol. St., 2010, 52, P. 776–780.

6. Kostenko M.G., Rempel A.A. Probabilities of octahedral clusters depending on long-range order parameters and composition in nonstoichiometric titanium monoxide TiOy. JETP, 2012, 115, P. 99–107.

7. Kostenko M.G., Valeeva A.A., Rempel A.A. Octahedral clusters in various phases of nonstoichiometric titanium monoxide. Mend. Communication, 2012, 22, P. 245–247.

8. Valeeva A.A., Rempel S.V., Schroettner H., Rempel A.A. Influence of the degree of order and nonstoichiometry on the microstructure and microhardness of titanium monoxide. Inorganic materials, 2017, 53, P. 1174–1179.

9. Andersson S., Collen B., Kuylenstierna U., Magneli A. Phase-analysis studies on the titanium-oxygen syste. Acta Chem. Scand., 1957, 11, P. 1641–1652.

10. Watanabe D., Castles J.R., Jostsons A., Marlin A.S. Ordered structure of titanium oxide. Nature, 1966, 210, P. 934–936.

11. Banus M.D., Reed T.B. Structural, electrical and magnetic properties of vacancy stabilized cubic TiO and VO, in: L. Eyring, M.O. Keeffe (Eds.), The Chemistry of Extended Defects in Non-Metallic Solids, Amsterdam-London: North-Holland Publ., 1970, P. 488–521.

12. Valeeva A.A., Rempel A.A., Gusev A.I. Ordering of cubic titanium monoxide into monoclinic Ti5O5. Inorganic materials, 2001, 37, P. 603–612.

13. Gusev A.I., Valeeva A.A. Diffraction of electrons in the Cubic Ti5O5 superstructure of titanium monoxide. JETP Letters, 2012, 96, P. 364–369.

14. Rempel A.A., Renterghem W.V., et al. In situ disordering of monoclinic titanium monoxide Ti5O5 studied by transmission electron microscope TE.M. Scientific reports, 2017, 7, 10769.

15. Guo C., Jia S., et al. Orientation domains in vacancy-ordered titanium monoxide. Acta Cryst. B, 2013, 69, P. 589–594.

16. Kostenko M.G, Valeeva A.A., Rempel A.A. Effect of high pressure on the period of the bais lattice and concentration of vacancies in titanium monoxide TiO. JETP Lett., 2017, 106, P. 354–357.

17. Valeeva A.A., Rempel A.A., Pfitzner A. Elimination of vacancies in titanium monoxide under high pressure in combination with high temperature. Journal of Monatshefte fur Chemie – Chemical Monthly ¨ , 2015, 146, P. 1205–1209.

18. Taylor A., Doyle N.G. Vacancy filling in titanium monoxide and similar semi-metals, In: The chemistry of extended defects in non-metallic solids, Eds by L. Eyring, M. O’Keefe. Amsterdam–London: North-Holland Publ., 1970, P. 523–540.

19. Fujimura T., Iwasaki H., et al. Structure changes in vacancy-rich titanium monoxide at high pressures and high temperatures. High pressure research, 1989, 1, P. 213–224.

20. Valeeva A.A., Nazarova S.Z., Rempel A.A. Influence of Particle Size, Stoichiometry, and Degree of Long-Range Order on Magnetic Susceptibility of Titanium Monoxide. Physics of the Solid State, 2015, 58, P. 771–778.

21. Rempel A.A. Hybrid nanoparticles based on sulfides, oxides, and carbides. Russ. Chem. Bull., 2013, 4, P. 857–868.

22. Valeeva A.A., Petrovykh K.A., Schroettner H., Rempel A.A. Effect of stoichiometry on the size of titanium monoxide nanoparticles produced by fragmentation. Inorganic Materials, 2015, 51, P. 1132–1137.

23. Rempel S.V., Valeeva A.A., et al. Vacuum-made nanocomposite of low-temperature hydroxyapatite and hard nonstoichiometric titanium monoxide with enhanced mechanical properties. Mend. Communication, 2016, 26, P. 543–545.

24. Valeeva A.A., Kostenko M.G., et al. A new Ti9O10 nanophase prepared by heat-treating nonstoichiometric milled TiOy nanopowder. Inorganic Materials, 2018, 54, P. 568–574.

25. Hall W.H. X-ray line broadening in metals. Proc. Phys. Soc. London. Sect. A, 1949, 62, P. 741–743.

26. Hall W.H., Williamson G.K. The diffraction pattern of cold worked metals: I. The nature of extinction. Proc. Phys. Soc. London B, 1954, 64, P. 937–946.

27. Giannozzi P., Baroni S., et al. Quantum Espresso: a modular and open-source software project for quantum simulations of materials. Journal of Physics. Condensed Matter, 2009, 21, 395502 (19 pp.)

28. Gusev A.I. Ordered orthorhombic phases of titanium monoxide. JETP Letters, 2001, 74, P. 91–95.

29. Banus M.D., Reed T.B., Strauss A.J. Electrical and magnetic properties of TiO and VO. Physical Review B, 1972, 5, P. 2775–2784.

30. Popov I.S., Enyashin A.N., Rempel A.A. Size dependent content of structural vacancies within TiO nanoparticles: Quantum-chemical DFTB study, Superlattices and Microstructures, 2018, 113, P. 459–465.


Рецензия

Для цитирования:


 ,  ,  ,   . Наносистемы: физика, химия, математика. 2018;9(4):544-548. https://doi.org/10.17586/2220-8054-2018-9-4-544-548

For citation:


Valeeva А.А., Kostenko М.G., Pfitzner A., Rempel А.А. Effect of high pressures and high temperatures on the structure of nanostructured titanium monoxide. Nanosystems: Physics, Chemistry, Mathematics. 2018;9(4):544-548. https://doi.org/10.17586/2220-8054-2018-9-4-544-548

Просмотров: 11


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)