Phase transitions in nanostructured K(1-X)(NH4)(X)H2PO4 (X = 0 – 0.15) solid solutions
https://doi.org/10.17586/2220-8054-2017-8-4-535-539
Abstract
Effect of ammonium dihydrogen phosphate admixture on phase transitions in nanostructured solid solutions (1 − x)KH2PO4–(x)(NH4)H2PO4 at x = 0, 0.05 and 0.15 has been studied by dielectric spectroscopy. The samples have been prepared by embedding of aqueous solutions into porous borosilicate glasses. The X-ray diffraction have shown that the crystal structure at room temperature corresponds to the bulk KDP and the average nanoparticle diameters are 49 (2) nm for the sample with 5 % of (NH4)H2PO4 (ADP) and 46 (2) nm for the nanocomposites with 15 % of ADP. Dielectric response data analysis have revealed the shifts of the ferroelectric phase transition temperature as a function of (NH4)H2PO4 concentration: at x = 0 ∆TC is equal to ∼6 K, at x = 0.05 ∆TC ∼3 K and at x = 0.15 ∆TC ∼2 K.
About the Authors
P. Yu. VaninaRussian Federation
195251; Polytechnicheskaya, 29; St. Petersburg
A. A. Naberezhnov
Russian Federation
194021; Polytechnicheskaya, 26; St. Petersburg
O. A. Alekseeva
Russian Federation
195251; Polytechnicheskaya, 29; St. Petersburg
A. A. Sysoeva
Russian Federation
194021; Polytechnicheskaya, 26; St. Petersburg
D. P. Danilovich
Russian Federation
190013; Moskovsky prospect, 26; St. Petersburg
V. I. Nizhankovskii
Poland
53-421; Gajowicka, 95; Wroclaw
References
1. Kumzerov Y., Vakhrushev S. Nanostructures within porous material. Encyclopedia of Nanoscience and Nanotecnology, 2003, 10, P. 1-39.
2. Lines M., Glass. A. Ferroelectrics and related materials. Mir, Moscow, 1980, 736 p.
3. Colla E.V., Fokin A.V., Koroleva E.Yu., Kumzerov Yu.A., Vakhrushev S.B., Savenko B.N. Ferroelectric phase transitions in materials embedded in porous media. NanoStructured Materials, 1999, 12, P. 963–966.
4. Tarnavich V., Korotkov L., Karaeva O., Naberezhnov A., Rysiakievicz-Pasek E. Effect of restricted geometry on structural phase transitions in KH<sub>2</sub>PO<sub>4</sub>and NH<sub>4</sub>H<sub>2</sub>PO<sub>4</sub> crystals. Optica Applicata, 2010, 40(2), P. 305–309.
5. Koroleva E., Naberezhnov A., Nizhankovskii V., Vanina P., Sysoeva A. The effect of magnetic field on the ferroelectric phase transition in KH<sub>2</sub>PO<sub>4</sub> nanoparticles embedded in magnetic porous glass. Technical Physics Letters, 2015, 41(10), P. 981–983.
6. Ravi G., Haja Hameed A.S., Ramasamy P. Effect of temperature and deuterium concentration on the growth of deuterated potassium dihydrogen phosphate (DKDP) single crystals. J. Cryst. Growth, 1999, 207, 319 p.
7. Trybula Z., Kaszy´nski J. Phases Coexistence of Hydrogen-Bonded Mixed Ferroelectric and Antiferroelectric Crystals. Ferroelectrics, 2004, 298, P. 347–351.
8. Kwon Oh.J., Kim J.-J. Proton glass behavior and phase diagram of the K<sub>1-x</sub>(NH<sub>4</sub>)<sub>x</sub>H<sub>2</sub>PO<sub>4</sub> system. Physical Review B, 1993, 48(9), P. 6639–6642.
9. Gridnev S.A., Korotkov L.N., Rogova S.P., Shuvalov L.A., Fedosyuk R.M. Dielectric properties and x-T phase diagram of K<sub>1-x</sub>(NH<sub>4</sub>)<sub>x</sub>H<sub>2</sub>PO<sub>4</sub> crystals. Ferroelectrcis Letters, 1991, 13(3), P. 67–72.
10. Ono Y., Hikita T., Ikeda T. Phase-transitions in mixed-crystal system K<sub>1-x</sub>(NH<sub>4</sub>)<sub>x</sub>H<sub>2</sub>PO<sub>4</sub>. J. Phys. Soc. Jpn., 1987, 56(2), P. 577–588.
11. Korotkov L.N., Shuvalov L.A. Transisions to the relaxor and diapole-glass states in mixed crystals of the potassium dihydrogen phosphate family. Crystallography reports, 2004, 49(5), P. 832–842.
12. Korotkov L.N. The influence of structural disorder on the physical properties of certain classes of weakly ordered polar dielectrics. Voronezh State Technical University, Voronezh, 2004, 299 p. (in Russian)
Review
For citations:
Vanina P.Yu., Naberezhnov A.A., Alekseeva O.A., Sysoeva A.A., Danilovich D.P., Nizhankovskii V.I. Phase transitions in nanostructured K(1-X)(NH4)(X)H2PO4 (X = 0 – 0.15) solid solutions. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(4):535-539. https://doi.org/10.17586/2220-8054-2017-8-4-535-539