Niobium-doped titanium dioxide nanoparticles for electron transport layers in perovskite solar cells
https://doi.org/10.17586/2220-8054-2017-8-4-540-545
Abstract
Nb-doped TiO2 nanoparticles with different doping concentrations, varied from 0 to 2.7 mol. %, were prepared by the sol-gel method followed by thermal treatment. The obtained nanoparticles were used to fabricate a series of electron transport layers for constructing perovskite solar cells (PSCs). The prepared layers were characterized using X-ray diffraction and optical transmission measurements. The effects of Nb doping concentration in TiO2 layers on the optical absorption behavior, the morphology and charge carrier dynamics were studied. A series of PSCs, based on the developed electron transport layers was fabricated and examined. It was found that PSC fabricated with 2.7 mol. % Nb content TiO2 electron transport layer have shown up to 19 % improvement of a power conversion efficiency compared to that, based on an undoped TiO2 layer.
Keywords
About the Authors
M. F. VildanovaRussian Federation
Institute of Biochemical Physics; Department of Solar Photovoltaics
119334; Kosygin St. 4; Moscow
S. S. Kozlov
Russian Federation
Institute of Biochemical Physics; Department of Solar Photovoltaics
119334; Kosygin St. 4; Moscow
A. B. Nikolskaia
Russian Federation
Institute of Biochemical Physics; Department of Solar Photovoltaics
119334; Kosygin St. 4; Moscow
O. I. Shevaleevskiy
Russian Federation
Institute of Biochemical Physics; Department of Solar Photovoltaics
119334; Kosygin St. 4; Moscow
N. A. Tsvetkov
Russian Federation
Institute of Biochemical Physics; Department of Solar Photovoltaics
119334; Kosygin St. 4; Moscow
O. V. Alexeeva
Russian Federation
Institute of Biochemical Physics; Department of Solar Photovoltaics
119334; Kosygin St. 4; Moscow
L. L. Larina
Russian Federation
Institute of Biochemical Physics; Department of Solar Photovoltaics
119334; Kosygin St. 4; Moscow
References
1. Yamada Y., Nakamura T., Endo M., Wakamiya A., Kanemitsu Y. Photocarrier recombination dynamics in perovskite CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> for solar cell applications. Journal of the American Chemical Society, 2014, 136(33), P. 11610–11613.
2. Marinova N., Tress W., Humphry-Baker R., Dar M.I., Bojinov V., Zakeeruddin S.M., Nazeeruddin M.K., Gr¨atzel M. Light harvesting and charge recombination in CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> perovskite solar cells studied by hole transport layer thickness variation. ACS nano, 2015, 9(4), P. 4200–4209.
3. Han G.S., Chung H.S., Kim B.J., Kim D.H., Lee J.W., Swain B.S., Mahmood K., Yoo J.S., Park N.G., Lee J.H., Jung H.S. Retarding charge recombination in perovskite solar cells using ultrathin MgO-coated TiO<sub>2</sub> nanoparticulate films. Journal of Materials Chemistry A, 2015, 3(17), P. 9160–9164.
4. Son D.Y., Im J.H., Kim H.S., Park N.G. 11 % efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system. The Journal of Physical Chemistry C, 2014, 118(30), P. 16567–16573.
5. Ajin Sundar S., Joseph John N., Synthesis and studies on structural and optical properties of zinc oxide and manganese-doped zinc oxide nanoparticles. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(6), P. 1024–1030.
6. Correa Baena J.P.C., Steier L., Tress W., Saliba M., Neutzner S., Matsui T., Giordano F., Jacobsson T.J., Srimath Kandala A.R., Zakeeruddin S.M., Petrozza A., Abate A., Nazeeruddin M.K., Gr¨atzel M., Hagfeldt A. Highly efficient planar perovskite solar cells through band alignment engineering. Energy and Environmental Science, 2015, 8(10), P. 2928–2934.
7. Lee M.M., Teuscher J., Miyasaka T., Murakami T.N., Snaith H.J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338(6107), P. 643–647.
8. Bi D., Moon S. J., H¨aggman L., Boschloo G., Yang L., Johansson E.M., Nazeeruddin M.K., Gr¨atzel M., Hagfeldt A. Using a two-step deposition technique to prepare perovskite (CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>) for thin film solar cells based on ZrO<sub>2</sub> and TiO<sub>2</sub> mesostructures. Rsc Advances, 2013, 3(41), P. 18762–18766.
9. Su T.S., Hsieh T.Y., Hong C.Y., Wei T.C. Electrodeposited ultrathin TiO2 blocking layers for efficient perovskite solar cells. Scientific reports, 2015, 5.
10. Murugadoss G., Mizuta G., Tanaka S., Nishino H., Umeyama T., Imahori H., Ito S. Double functions of porous TiO<sub>2</sub> electrodes on CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> perovskite solar cells: Enhancement of perovskite crystal transformation and prohibition of short circuiting. APL Materials, 2014, 2(8), P. 081511.
11. Lindblad R., Bi D., Park B.W., Oscarsson J., Gorgoi M., Siegbahn H., Odelius M., Johansson E. M. J., Rensmo H. Electronic structure of TiO<sub>2</sub>/CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> perovskite solar cell interfaces. The journal of physical chemistry letters, 2014, 5(4), P. 648–653.
12. Zhu T., Gao S.P. The stability, electronic structure, and optical property of TiO<sub>2</sub> polymorphs. The Journal of Physical Chemistry C, 2014, 118(21), P. 11385–11396.
13. Yu H., Zhang S., Zhao H., Will G., Liu P. An efficient and low-cost TiO<sub>2</sub> compact layer for performance improvement of dye-sensitized solar cells. Electrochimica Acta, 2009, 54(4), P. 1319–1324.
14. Van de Lagemaat J., Park N.G., Frank A.J. Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO<sub>2</sub> solar cells: a study by electrical impedance and optical modulation techniques. The Journal of Physical Chemistry B, 2000, 104(9), P. 2044–2052.
15. Heo J.H., You M.S., Chang M.H., Yin W., Ahn T.K., Lee S.J., Sung S.J., Kim D.H., Im S.H. Hysteresis-less mesoscopic CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> perovskite hybrid solar cells by introduction of Li-treated TiO<sub>2</sub> electrode. Nano Energy, 2015, 15, P. 530–539.
16. Wang J., Qin M., Tao H., Ke W., Chen Z., Wan J., Qin P., Xiong L., Lei H., Yu H., Fang, G. Performance enhancement of perovskite solar cells with Mg-doped TiO<sub>2</sub> compact film as the hole-blocking layer. Applied Physics Letters, 2015, 106(12), P. 121104.
17. Niaki A.G., Bakhshayesh A.M., Mohammadi M.R. Double-layer dye-sensitized solar cells based on Zn-doped TiO<sub>2</sub> transparent and light scattering layers: improving electron injection and light scattering effect. Solar Energy, 2014, 103, P. 210–222.
18. Zhu F., Zhang P., Wu X., Fu L., Zhang J., Xu D. The Origin of Higher Open-Circuit Voltage in Zn-Doped TiO<sub>2</sub> Nanoparticle-Based Dye-Sensitized Solar Cells. ChemPhysChem, 2012, 13(16), P. 3731–3737.
19. Yang M., Guo R., Kadel K., Liu Y., O’Shea K., Bone R., Wang X., He J., Li W. Improved charge transport of Nb-doped TiO<sub>2</sub> nanorods in methylammonium lead iodide bromide perovskite solar cells. Journal of Materials Chemistry A, 2014, 2(46), P. 19616–19622.
20. Oksengendler B.L., Ashurov N.R., Maksimov S E., Uralov I.Z., Karpova O.V. Fractal structures in perovskitebased solar cells. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8(1), P. 92–98.
21. Kozlov S., Nikolskaia A., Larina L., Vildanova M., Vishnev A., Shevaleevskiy O. Rare-earth and Nb doping of TiO<sub>2</sub> nanocrystalline mesoscopic layers for high-efficiency dye-sensitized solar cells. Physica status solidi A, 2016, 213(7), P. 1801–1806.
22. Tsvetkov N., Larina L., Shevaleevskiy O., Ahn B.T. Electronic structure study of lightly Nb-doped TiO<sub>2</sub> electrode for dye-sensitized solar cells. Energy and Environmental Science, 2011, 4(4), P. 1480–1486.
23. Tsvetkov N.A., Larina L.L., Shevaleevskiy O., Al-Ammar E.A., Ahn B.T. Design of conduction band structure of TiO<sub>2</sub> electrode using Nb doping for highly efficient dye-sensitized solar cells. Progress in Photovoltaics: Research and Applications, 2012, 20(7), P. 904–911.
24. Ito S., Chen P., Comte P., Nazeeruddin M.K., Liska P., P´echy P., Gr¨atzel M. Fabrication of screen-printing pastes from TiO<sub>2</sub> powders for dye-sensitised solar cells. Progress in photovoltaics: research and applications, 2007, 15(7), P. 603–612.
25. Park N.G. Methodologies for high efficiency perovskite solar cells. Nano convergence, 2016, 3(1), P. 1–13.
26. McEvoy A., Markvart T., Casta˜ner L. Practical handbook of photovoltaics: fundamentals and applications. Elsevier, 2003.
Review
For citations:
Vildanova M.F., Kozlov S.S., Nikolskaia A.B., Shevaleevskiy O.I., Tsvetkov N.A., Alexeeva O.V., Larina L.L. Niobium-doped titanium dioxide nanoparticles for electron transport layers in perovskite solar cells. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(4):540-545. https://doi.org/10.17586/2220-8054-2017-8-4-540-545