Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Formation mechanism of core-shell nanocrystals obtained via dehydration of coprecipitated hydroxides at hydrothermal conditions

https://doi.org/10.17586/2220-8054-2018-9-4-568-572

Abstract

Here, we propose a formation mechanism for core-shell nanoparticles by self-organization in coprecipitated mixed hydroxides under hydrothermal conditions. A thermodynamic reason for this process is because of a decrease in the components’ solubilities together with an increase of structure’s dimension. As a particular example of such type of behavior, we investigate core-shell nanoparticle formation in the ZrO2–Y2O3–H2O system.

About the Authors

O. V. Almjasheva
Saint-Petersburg Electrotechnical University “LETI”; Ioffe Institute
Russian Federation

Saint-Petersburg, 197376

Saint-Petersburg, 194021



A. A. Krasilin
Ioffe Institute
Russian Federation

Saint-Petersburg, 194021



V. V. Gusarov
Ioffe Institute
Russian Federation

Saint-Petersburg, 194021



References

1. Chatterjee K., Sarkar S., Rao K.J., Paria S. Core/shell nanoparticles in biomedical applications. Adv. Colloid Interace Sci., 2014, 209, P. 8–39.

2. Almjasheva O.V., Garabadzhiu A.V., Kozina Yu.V., Litvinchuk L.F., Dobritsa V.P. Biological effect of zirconium dioxide-based nanoparticles. Nanosyst.: Phys. Chem. Math., 2017, 8(3), P. 391–396.

3. Rosenholm J.M., Zhang J., Sun W., H. Gu Large-pore mesoporous silica-coated magnetite core-shell nanocomposites and their relevance for biomedical applications. Microp. Mesop. Mater., 2011, 145(1-3), P. 14–20.

4. Lee C., Shin K., Lee Y.J. Jung C. Lee H.M. Effects of shell thickness on Ag-Cu2O core-shell nanoparticles with bumpy structures for enhancing photocatalytic activity and stability. Catalysis Today, 2017, 303, P. 313–319.

5. Gawande M.B., Goswami A, Asefa T., Guo H., Biradar A.V., Peng D.-L., Zboril R., Varma R.S. Core-shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem. Soc. Rev., 2015, 44(21), P. 7540–7590.

6. Khoshroo A., Hosseinzadeh L., Sobhani-Nasab A., Rahimi-Nasrabadi M., Ehrlich H. Development of electrochemical sensor for sensitive determination of oxazepam based on silver-platinum core-shell nanoparticles supported on graphene. J. Electroanal. Chem., 2018, 823, P. 61–66.

7. Majhi S.M., Naik G.K., Lee H.-J., Song H.-G., Lee C.-R., Lee I.-H., Yu Y.-T. Au@NiO core-shell nanoparticles as a p-type gas sensor: Novel synthesis, characterization, and their gas sensing properties with sensing mechanism. Sens. Actuators B: Chem., 2018, 268, P. 223–231.

8. Bugrov A.N., Smyslov R.Yu., Zavialova A.Yu., Kirilenko D.A., Pankin D.V. Phase composition and photoluminescence correlations in nanocrystalline ZrO2:Eu3+ phosphors synthesized under hydrothermal conditions. Nanosyst.: Phys. Chem. Math., 2018, 9(3), P. 378–388.

9. Astafyeva L.G., Pustovalov V.K., Fritzsche W. Tuning light concentration inside plasmonic core-shell nanoparticles during laser irradiation. Photonics Nanostruct., 2017, 26, P. 35–40.

10. Li Y., Shao L., Zhong F., Ding P., Chu B. Luo F., Xu K., Zeng F., Du Y. Light control based on unidirectional scattering in metal-dielectric core-shell nanoparticles. Opt. Commun., 2018, 426, P. 483–489.

11. Klekotka U, Piotrowska B., Satu la D, Kalska-Szostko B. Modified ferrite core-shell nanoparticles magneto-structural characterization. Appl. Surf. Sci., 2018, 444, P. 161–167.

12. Chaudhuri R.G., Paria S. Core/Shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev., 2012, 112(4), P. 2373–2433.

13. Srdic V.V.; Moji ´ c B., Nikoli ´ c M., Ognjanovi ´ c S. Recent progress on synthesis of ceramics core/shell nanostructures. ´ Process. Appl. Ceram., 2013, 7(2), P. 45–62.

14. Nomoev A.V., Bardakhanov S.P., Schreiber M., Bazarova D.G., Romanov N.A., Baldanov B.B., Radnaev B.R., Syzrantsev V.V. Structure and mechanism of the formation of core-shell nanoparticles obtained through a one-step gas-phase synthesis by electron beam evaporation. Beilstein J. Nanotechnol, 2015, 6, P. 874–880.

15. Gusarov V.V., Malkov A.A., Malygin A.A., Suvorov S.A. Thermally activated transformations of 2d nonautonomous phases and contraction of polycrystalline oxide materials. Inorg. Mater., 1995, 31(3), P. 320–323.

16. Gusarov V.V., Malkov A.A., Ishutina Z.N., Malygin A.A. Phase formation in a nanosize silicon oxide film on the surface of aluminum oxide. Tech. Phys. Lett., 1998, 24(1), P. 1–3.

17. Krasilin A.A., Bodalyov I.S., Malkov A.A., Khrapova E.K., Maslennikova T.P., Malygin A.A. On an adsorption/photocatalytic performance of nanotubular Mg3Si2O5(OH)4/TiO2 composite. Nanosyst.: Phys. Chem. Math., 2018, 9(3), P. 410–416.

18. Korotcenkov G., Gulina L.B., Cho B.K., Han S.H., Tolstoy V.P. SnO2-Au nanocomposite synthesized by successive ionic layer deposition method: Characterization and application in gas sensors. Mater. Chem. Phys., 2011, 128(3), P. 433–441.

19. Lee D.K., Song Y., Tran V.T., Kim J., Park E.Y., Lee J. Preparation of concave magnetoplasmonic core-shell supraparticles of gold-coated iron oxide via ion-reducible layer-by-layer method for surface enhanced Raman scattering. J. Colloid Interface Sci., 2017, 499, P. 54–61.

20. Gusarov V.V., Egorov F.K., Ekimov S.P., Suvorov S.A. Mossbauer study of kinetics of films state formation under the interaction of magnesium and iron oxides. Zhurnal Fizicheskoi Khimii., 1987, 61(6), P. 1652–1654 (in Russian).

21. Gusarov V.V. Fast solid-phase chemical reactions. Russ. J. Gen. Chem, 1997, 67(12), P. 1846–1851.

22. Gusarov V.V., Suvorov S.A. Transformations of nonautonomous phases and densification of polycrystalline systems. J. of Appl. Chem. of the USSR, 1992, 65(7), P. 1227–1235.

23. Gusarov V.V., Popov I.Y., Flows in two-dimensional non-autonomous phases in polycrystalline systems. Nuovo Cimento Della Societa Italiana Di Fisica D, 1996, 18(7), P. 799–805.

24. Almjasheva O.V., Gusarov V.V. The role of non-autonomous state in the formation of nanomaterials structure and properties. Ch. 13 in Nanomaterials: Properties and Potential Applications. Nauchnyi Mir, Moscow, 2014. P. 384–409 (in Russian).

25. Almjasheva O.V., Smirnov A.V., Fedorov B.A., Tomkovich M.V., Gusarov V.V. Structural features of ZrO2-Y2O3 and ZrO2-Gd2O3 nanoparticles formed under hydrothermal conditions. Russ. J. Gen. Chem., 2014, 84(5), P. 804–809.

26. Smirnov A.V., Fedorov B.A., Tomkovich M.V., Almjasheva O.V., Gusarov V.V. Core-shell nanoparticles forming in the ZrO2-Gd2O3-H2O system under hydrothermal conditions. Dokl. Phys. Chem., 2014, 456(1), P. 71–73.

27. Rusanov A.I. Phase equilibria and surface phenomena. Khimiya, Leningrad, 1967. 388 p. (in Russian).

28. Gusarov V.V., Suvorov S.A. Thickness of 2-dimensional nonautonomous phases in local equilibrium polycrystalline systems based on a single bulk phase. Russ. J. Appl. Chem., 1993, 66(7), P. 1212–1216.

29. Pozhidaeva O.V., Korytkova E.N., Romanov D.P., Gusarov V.V. Formation of ZrO2 nanocrystals in hydrothermal media of various chemical compositions. Russ. J. Gen. Chem., 2002, 72(6), P. 849–853.

30. Almjasheva O.V. Formation and structural transformations of nanoparticles in the TiO2-H2O system. Nanosyst.: Phys. Chem. Math., 2016, 7(6), P. 1031–1049.

31. Ivanov V.K., Fedorov P.P., Baranchikov A.Y., Osiko V.V. Oriented attachment of particles: 100 years of investigations of non-classical crystal growth. Russ. Chem. Rev., 2014, 83(12), P. 1204–1222.

32. Fedorov P.P., Ivanov V.K. Cooperative Formation of Crystals by Aggregation and Intergrowth of Nanoparticles. Dokl. Phys., 56(4), P. 205–207.

33. Suvorov S.A., Semin E.G., Gusarov V.V. Phase Diagrams and Thermodynamics of Oxide Solid Solutions. Leningrad University, Leningrad, 1986. 140 p. (in Russian).

34. Urusov V.S. Theory of Isomorphic Mixing. Science, Moscow, 1977, 251 p. (in Russian).

35. Landau L.D., Lifshitz E.M. Theoretical Physics. Statistical Physics. (vol. V). Part I. 3-rd ed., Rev. M.: Science. Ch. Ed. Fiz.-Mat. Lit, 1976, 584 p. (in Russian).

36. Degtyarev S.A., Voronin G.F. Solution of ill-posed problems in thermodynamics of phase equilibria. The ZrO2-Y2O3 system. Calphad, 1988, 12(1), P. 73–82.


Review

For citations:


Almjasheva O.V., Krasilin A.A., Gusarov V.V. Formation mechanism of core-shell nanocrystals obtained via dehydration of coprecipitated hydroxides at hydrothermal conditions. Nanosystems: Physics, Chemistry, Mathematics. 2018;9(4):568-572. https://doi.org/10.17586/2220-8054-2018-9-4-568-572

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)