Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

On the accuracy of the probe-sample contact stiffness measured by an atomic force microscope

https://doi.org/10.17586/2220-8054-2019-10-6-642-653

Abstract

To improve the accuracy of atomic force microscopy in nanomechanical experiments, an analytical model is proposed to study the static interaction of a cantilever in contact with a sample. The model takes into account: the cantilever probe is clamped by the sample or slides along its surface, the geometric and mechanical characteristics of the sample and the cantilever, their relative orientation. The cantilever console bending and torsion angles as functions of the sample displacements in three orthogonal directions have been measured by atomic force microscopy with an optical beam deflection scheme.The measurements are in good agreement with the simulation.

About the Author

A. V. Ankudinov
Ioffe Institute
Russian Federation

26 Politekhnicheskaya, Saint-Petersburg 194021



References

1. Binnig G., Quate C.F., Gerber Ch. Atomic Force Microscope. Physical Review Letters, 1986, 56 (9), P. 930–933.

2. Scanning probe based apparatus and methods for low-force profiling of sample surfaces and detection and mapping of local mechanical and electromagnetic properties in non-resonant oscillatory mode. Patent Number: US 9,110,092 B1, USA. Date of Patent: Aug. 18, 2015. Int. Cl.: GOIN I3/6 (2006.01), G0IB 5/28 (2006.01). Inventors: Magonov S., Belikov S., Alexander J.D., Wall C.G., Leesment S., and Bykov V. Assignee: NT-MDT Development Inc., Tempe, AZ (US). Appl. No.: 14/247,041. Filed: Apr. 7, 2014. 10 Claims, 34 Drawing Sheets.

3. Jumping probe microscope. Patent Number: 5,229,606, USA. Date of Patent: Jul. 20, 1993. Int. Cl.: H01J 37/26. Inventors: Elings V., Gurley J. Assignee: Digital Instruments, Inc., Santa Barbara, Calif. Appl. No.: 361,545. Filed: Jun. 5, 1989. 30 Claims, 4 Drawing Sheets.

4. de Pablo P.J., Colchero J., Gomez-Herrero J., and Baro A.M. Jumping mode scanning force microscopy. Applied Physics Letters, 1998, 73 (22), P. 3300–3302.

5. Kalinin A.S. PhD thesis. National Research Center “Kurchatov Institute”, Moscow, 2017, 102 p.

6. Sarid D. Exploring scanning probe microscopy with MATHEMATICA. 2nd ed. Weinheim: WILEY-VCH Verlag, 2007, 310 p.

7. Ankudinov A.V., Khalisov M.M., et al. The Probe Length Effect on the Cantilever of an Atomic Force Microscope in Measuring the Mechanical Properties of Living Neurons. Tech. Phys. Lett., 2018, 44 (8), P. 671–674.

8. Alexander S., Hellemans L., et al. An atomicresolution atomicforce microscope implemented using an optical lever. J. of Appl. Phys., 1989, 65 (1), P. 164–167.

9. Fujisawa S., Ohta M., et al. Difference between the forces measured by an optical lever deflection and by an optical interferometer in an atomic force microscope. Rev. Sci. Instrum, 1994, 65 (3), P. 644–647.

10. Kawakatsu H., Bleuler H., Saito T., Hiroshi K. Dual Optical Levers for Atomic Force Microscopy. Jpn. J. Appl. Phys., 1995, 34, 1 (6B), P. 3400–3402.

11. Asylum Research Quantifies the “Last Axis” in Atomic Force Microscopy, 2018, URL: https://www.oxford-instruments.com.

12. Labuda A., Proksch R. Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope. Appl. Phys. Lett., 2015, 106 (25), 253103.

13. Mironov V.L. Fundamentals of the Scanning Probe Microscopy. The Russian Academy of Sciences Institute of Physics of Microsructures, Nizhniy Novgorod, 2004, 97 p.

14. URL: https://www.ntmdt-si.ru/resources/spm-theory/theoretical-background-of-spm.

15. Landau L.D., Lifshitz E.M. Theory of Elasticity. Oxford, Pergamon Press Ltd., 1970, 177 p.

16. Dunaevskiy M., Geydt P., et al. Youngs Modulus of Wurtzite and Zinc Blende InP Nanowires. Nano Letters, 2017, 17 (6), P. 3441–3446.

17. Popov V.L., Heß M., Willert E. Handbook of Contact Mechanics. Exact Solutions of Axisymmetric Contact Problems, 2019. Translation from the German Language edition: Popov et al: Handbuch der Kontaktmechanik. Springer-Verlag GmbH Deutschland, 2018, 347 p.

18. Heim L.-O., Kappl M., Butt H.-J. Tilt of Atomic Force Microscope Cantilevers: Effect on Spring Constant and Adhesion Measurements. Langmuir, 2004, 20, P. 2760–2764.

19. Hutter J.L. Comment on Tilt of Atomic Force Microscope Cantilevers: Effect on Spring Constant and Adhesion Measurements. Langmuir, 2005, 21, P. 2630–2632.

20. Timoshchuk K.I., Khalisov M.M., et al. Mechanical characteristics of intact fibroblasts studied by atomic force microscopy. Tech. Phys. Lett., 2019, 45 (9), P. 947–950.

21. Bhushan B. (Ed.) Nanotribology and Nanomechanics. An Introduction. Springer-Verlag, Berlin, Heidelberg, 2005, 1148 p.

22. URL: http://nanoprobes.aist-nt.com.

23. Sader J.E., Chon J.W.M., Mulvaney P. Calibration of rectangular atomic force microscope cantilever. Rev. Sci. Instrum., 1999, 70, P. 3967– 3969.

24. Mate C.M., McClelland G.M., Erlandsson R., Chiang S. Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett., 1987, 59, P. 1942–1945.

25. Salvetat J.-P., Briggs G.A.D., et al. Elastic and Shear Moduli of Single-Walled Carbon Nanotube Ropes. Phys. Rev. Lett., 1999, 82, P. 944–947.


Review

For citations:


Ankudinov A.V. On the accuracy of the probe-sample contact stiffness measured by an atomic force microscope. Nanosystems: Physics, Chemistry, Mathematics. 2019;10(6):642-653. https://doi.org/10.17586/2220-8054-2019-10-6-642-653

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)