Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Influence of thermal treatment of nanometer-sized titanate and barium orthotitanate precursors on the electrorheological effect

https://doi.org/10.17586/2220-8054-2018-9-6-746-753

Abstract

The results for the sol-gel synthesis of acylate gels are reported in the titanium tetra-n-butoxide – barium hydroxide – acetic acid system at a molar ratio of Ba:Ti components of 1:1 and 2:1. The thermal decomposition of these gels over temperatures ranging from 85 –1200 C was investigated using thermal analysis methods, XRD, FTIR spectroscopy, electron microscopy, and dielectrometry at frequencies from 25 – 106 Hz. The electrorheological effect in suspensions of powders synthesized at different temperatures with a stoichiometric Ba:Ti ratio = 1:1 and 2:1, in polydimethylsiloxane was studied. The influence of thermal gel treatment was analyzed on their dielectric properties as fillers of electrorheological fluids and on the magnitude of the electrorheological effect.

About the Authors

K. V. Ivanov
G.A. Krestov Institute of Solution Chemistry, RAS
Russian Federation

Ivanovo



A. V. Agafonov
G.A. Krestov Institute of Solution Chemistry, RAS
Russian Federation

Ivanovo



A. E. Baranchikov
Kurnakov Institute of General and Inorganic Chemistry, RAS
Russian Federation

Moscow



V. K. Ivanov
Kurnakov Institute of General and Inorganic Chemistry, RAS
Russian Federation

Moscow



S. A. Kozyukhin
Kurnakov Institute of General and Inorganic Chemistry, RAS
Russian Federation

Moscow



E. V. Fatyushina
Kurnakov Institute of General and Inorganic Chemistry, RAS
Russian Federation

Moscow



V. V. Kozik
National Research Tomsk State University
Russian Federation

Tomsk



References

1. Agafonov A.V., Zakharov A.G. Electrorheological fluids. Russ. J. Gen. Chem., 2010, 80, P. 567–575.

2. Liu Y.D., Choi H.J. Electrorheological fluids: smart soft matter and characteristics. Soft Matter, 2012, 8, P. 11961–11978.

3. Wen W., Huang X., Sheng P. Electrorheological fluids: structures and mechanisms. Soft Matter, 2008, 4, P. 200–210.

4. Wu C.W., Conrad H. Dielectric and conduction effects in non-Ohmic electrorheological fluids Phys. Rev. E, 1997, 56 (5), P. 5789–5797.

5. Whitte M., Bullough W.A., Peel D.J., et al. Dependence of electrorhrologycal response on conductivity and polarization time. Phys. Rev. E, 1994, 49 (6), P. 5249–5283.

6. Agafonov V., Kraev A.S., et al. Comparative study of the electrorheological effect in suspensions of needle-like and isotropic cerium dioxide nanoparticles. Rheol Acta, 2018, 57, P. 307–315.

7. Agafonov A.V., Kraev A.S., et al. Properties of electrorheological fluids based on nanocrystalline cerium dioxide. Russ. J. Inorg. Chem., 2017, 62, P. 625–632.

8. Agafonov A.V., Krayev A.S., et al. Nanocrystalline ceria: a novel material for electrorheological fluids. RSC Adv., 2016, 6, P. 88851–88858.

9. Parthasarathy M., Klingenberg D.G. Electrorheology: mechanisms and models. Mater. Sci. Eng., 1996, 17, P. 57–103.

10. Ivanov K.V., Ivanova O.S., Agafonov A.V., Kozyukhin S.A. The dielectric properties and flow of electrorheological fluids based on polymer-coated nanodispersed barium tetraacetate titanyl particles upon a dynamic shear in electric fields. Colloid Journal, 2017, 79 (2), P. 204–211.

11. Xufeng Dong, Ning Ma, et al. The contribution of friction to electrorheological properties of a chrysanthemum-like particle suspension. RSC Adv., 2015, 5, P. 74656–74663.

12. Wu J., Song Z., et al. Giant electrorheological fluids with ultrahigh electrorheological efficiency based on a micro/nano hybrid calcium titanyl oxalate composite. NPG Asia Materials, 2016, 8, P. 322.

13. Liu Y., Guan J., et al. Chromium doped barium titanyl oxalate nano-sandwich particles: A facile synthesis and structure enhanced electrorheological properties. Materials Chemistry and Physics, 2010, 122, P. 73–78.

14. Jiang W., Jiang C., Gong X., Zhang Z. Structure and electrorheological properties of nanoporous BaTiO3 crystalline powders prepared by solgel method. J. Sol-Gel Sci. Technol., 2009, 52, P. 8–14.

15. Wen W., Huang X., et al. The giant electrorheological effect in suspensions of nanoparticles. J. Nature Materials, 2003, 2, P. 727–730.

16. Bose H., Trendler A. Comparison of rheological and electric properties of ER fluids based on different materials. Int. J. Mod. Phys. B, 2001, 15 (6–7), P. 626–633.

17. Rankin P.J., Klingenberg D.J. The electrorheology of barium titanate suspensions. J. Rheol., 1998, 42 (3), P. 639–656.

18. Ahmad T., Ganguli A.K. Synthesis of nanometer-sized particles of barium orthotitanate prepared through a modified reverse micellar route: Structural characterization, phase stability and dielectric properties. J. Mater. Res., 2004, 19 (10), P. 2905–2912.

19. Schubert U. Organically modified transition metal alkoxides: Chemical problems and structural issues on the way to materials syntheses. Acc. Chem. Res., 2007, 40, P. 730–737.

20. Wang L., Liu L., et al. Wet routes of high purity BaTiO3 nanopowders. Journal of Alloys and Compounds, 2007, 440, P. 78–83.

21. Hwang U.Y., Park H.S., Koo K.K. Behavior of barium acetate and titanium isopropoxide during the formation of crystalline barium titanate. Ind. Eng. Chem. Res., 2004, 43, P. 728–734.

22. Hao T. Electrorheological fluids: The non-aqueous suspensions. Cambridge Massachusetts USA, 2005, 22, 553 p.

23. Shen R., Wang X., et al. Polar-molecule-dominated electrorheological fluids featuring high yield stresses. Adv. Mater., 2009, 21, P. 4631– 4635.

24. Agafonov A.V., Davydova O.I., et al. Unexpected effects of activator molecules’ polarity on the electroreological activity of titanium dioxide nanopowders. J. Phys. Chem. B, 2017, 121 (27), P. 6732–6738.


Review

For citations:


Ivanov K.V., Agafonov A.V., Baranchikov A.E., Ivanov V.K., Kozyukhin S.A., Fatyushina E.V., Kozik V.V. Influence of thermal treatment of nanometer-sized titanate and barium orthotitanate precursors on the electrorheological effect. Nanosystems: Physics, Chemistry, Mathematics. 2018;9(6):746–753. https://doi.org/10.17586/2220-8054-2018-9-6-746-753

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)