Solid-phase interaction in ZrO2–Fe2O3 nanocrystalline system
https://doi.org/10.17586/2220-8054-2018-9-6-763-769
Abstract
Based on the results of X-ray phase analysis and Mossbauer spectroscopy, it was demonstrated that in the ZrO¨ 2–Fe2O3 system, represented by the mechanical mixture of m–ZrO2 (14±2 nm) and α-Fe2O3 (43±2 nm) nanoparticles, being heated above the temperature corresponding to the melting temperature of the two-dimensional nonautonomous phase, transformation of α-Fe2O3 occurs resulting in appearing of the X-ray amorphous magnetically disordered state localized on the surface of ZrO2 nanoparticles in the form of a thin layer. Transformation pattern in ZrO2–Fe2O3 nanocrystalline system has been introduced.
About the Authors
S. A. KirillovaRussian Federation
ul. Professora Popova, 5, St. Petersburg, 197376
O. V. Almjasheva
Russian Federation
ul. Professora Popova, 5, St. Petersburg, 197376
V. V. Panchuk
Russian Federation
Universitetskaya nab., 7–9, St. Petersburg, 199034
V. G. Semenov
Russian Federation
Universitetskaya nab., 7–9, St. Petersburg, 199034
References
1. ] Shackelford J.F., Doremus R.H. Ceramic and Glass Materials. Structure, Properties and Processing. Springer, Boston, MA, 2008, 209 p.
2. Almjasheva O.V., Garabadzhiu A.V., Kozina Yu.V., et al. Biological effect of zirconium dioxide-based nanoparticles. Nanosystems: Phys. Chem. Math., 2017, 8 (3), P. 391–396.
3. Chen K., Dong L., Yan Q., Chen Y. Dispersion of Fe2O3 supported on metal oxides studied by Mssbauer spectroscopy and XRD. J. Chem. Soc., Faraday Trans., 1997, 93 (12), P. 2203–2206.
4. Okamoto Y., Kubota T., Ohto Y., Nasu S. Metal Oxide–Support Interactions in Fe/ZrO2 Catalysts. J. Phys. Chem. B, 2000, 104 (35), P. 8462–8470.
5. Kuryliszyn-Kudelska I., Arciszewska M., Maolepszy A., et al. Influence of Fe doping on magnetic properties of ZrO2 nanocrystals. J. Alloys Compd., 2015, 632, P. 609–616.
6. de Souza A.O., Ivashita F.F., Biondo V., et al. Structural and magnetic properties of iron doped ZrO2. J. Alloys Compd., 2016, 680, P. 701–710.
7. Belov G.V., Iorish V.S., Yungman V.S. IVTANTHERMO for Windows – database on thermodynamic properties and related software. Calphad: Comput. Coupling Phase Diagrams Thermochem., 1999, 23 (2), P. 173–180.
8. Srinivasan R., Davis B.H., Burl C.O., Hubbard C.R. Crystallization and phase transformation process in zirconia: an in situ hightemperature X-ray diffraction study. J. Am. Ceram. Soc., 1992, 75 (5), P. 1217–1222.
9. Oleinikov N.N., Pentin I.V., Murav’eva G.P., Ketsko V.A. Highly disperse metastable ZrO2-based phases. Russ. J. Inorg. Chem., 2001, 46 (9), P. 1275–1281.
10. Guo X., Schober T. Water incorporation in tetragonal zirconia. J. Am. Ceram. Soc., 2004, 87 (4), P. 746–748.
11. Shukla S., Seal S. Mechanisms of room temperature metastable tetragonal phase stabilisation in zirconia. Int. Mater. Rev., 2005, 50 (1), P. 45–64.
12. Zhang F., Chupas P.J., Lui S.L.A., et al. In situ study of the crystallization from amorphous to cubic zirconium oxide: Rietveld and reverse Monte Carlo analyses. Chem. Mater., 2007, 19 (13), P. 3118–3126.
13. Lin F.-Q., Dong W.-S., Liu C.-L., et al. In situ source–template-interface reaction route to hollow ZrO2 microspheres with mesoporous shells. J. Colloid Interface Sci., 2008, 323 (2), P. 365–371.
14. Almjasheva O.V. Heat-stimulated transformation of zirconium dioxide nanocrystals produced under hydrothermal conditions. Nanosystems: Phys. Chem. Math., 2015, 6 (5), P. 697–703.
15. Li F., Li Y., Song Z., et al. Evolution of the crystalline structure of zirconia nanoparticles during their hydrothermal synthesis and calcination: Insights into the incorporations of hydroxyls into the lattice. J. Eur. Ceram. Soc., 2015, 35 (8), P. 2361–2367.
16. Li P., Chen I-W., Penner-Hahn J.E. Effect of dopants on zirconia stabilization – An X-ray Absorption Study: I, Trivalent Dopants. J. Am. Ceram. Soc., 1994, 77 (1), P. 118–128.
17. Muan A. Phase equilibria at high temperatures in oxide systems involving changes in oxidation states. Am. Jour. Sci., 1958, 256 (3), P. 171–207.
18. Jones T., Kimura S., Muan A. Phase Relations in the System FeO–Fe2O3–ZrO2–SiO2. J. Am. Ceram. Soc., 1967, 50 (3), P. 137–142.
19. Petrov Yu.B., Udalov Yu.P., Slovak J., Morozov Yu.G. Liquid immiscibility phenomena in melts of the ZrO2–FeO–Fe2O3 System. Glass Phys. Chem., 2002, 28 (3), P. 139–146.
20. Bechta S.V., Krushinov E.V., Al’myashev V.I., et al. Phase relations in the ZrO2–FeO system. Russ. J. Inorg. Chem., 2006, 51 (2), P. 325–331.
21. Bechta S.V., Krushinov E.V., Almjashev V.I., et al. Phase diagram of the ZrO2–FeO system. J. Nucl. Mater., 2006, 348 (1–2), P. 114–121.
22. Popovic S., Grzˇeta B., Czak´ o-Nagy I., Musi´ c S. Structural properties of the system m-ZrO´ 2–α-Fe2O3. J. Alloys Compd., 1996, 241 (1–2), P. 10–15.
23. Kriventsov V.V., Kochubey D.I., Maximov Yu.V., et al. Structural determination of the Fe-modified zirconium oxide. Nucl. Instrum. Methods Phys. Res., Sect. A, 2001, 470 (1–2), P. 341–346.
24. Navo J.A., Hidalgo M.C., Coln G., et al. Preparation and Physicochemical Properties of ZrO2 and Fe/ZrO2 Prepared by a Sol-Gel Technique. Langmuir, 2001, 17 (1), P. 202–210.
25. Beck H.P., Kaliba C. On the solubility of Fe, Cr and Nb in ZrO2 and its effect on thermal dilatation and polymorphic transition. Mater. Res. Bull., 1990, 25 (9), P. 1161–1168.
26. Ghigna P., Spinolo G., Anselmi-Tamburini U., et al. Fe-Doped Zirconium Oxide Produced by Self-Sustained High-Temperature Synthesis: Evidence for an Fe–Zr Direct Bond. J. Am. Chem. Soc., 1999, 121 (2). P. 301–307.
27. Davison S., Kershaw R., Dwight K., Wold A. Preparation and characterization of cubic ZrO2 stabilized by Fe(III) and Fe(II). J. Solid State Chem., 1988, 73 (1), P. 47–51.
28. Inwang I.B., Chyad F., McColm I.J. Crystallisation of iron(III)-zirconia co-gels. J. Mater. Chem., 1995, 5 (8), P. 1209–1213.
29. Berry F.J., Loretto M.H., Smith M.R. Iron-zirconium oxides: An investigation of structural transformations by X-ray diffraction, electron diffraction, and iron-57 Mossbauer spectroscopy.¨ J. Solid State Chem., 1989, 83 (1), P. 91–99.
30. Berry F.J., Jobsen S., Smith M.R. Iron-zirconium oxide catalysts for the hydrogenation of carbon monoxide: In situ studies by iron-57 Mossbauer spectroscopy.¨ Hyperfine Interact., 1989, 46 (1), P. 607–611.
31. Stefaniˇ c G., Musi´ c S., Popovi´ c S., Nomura K. A study of the ZrO´ 2–Fe2O3 system by XRD, 57Fe Mossbauer and vibrational spectroscopies.¨ J. Mol. Struct., 1999, 480–481, P. 627–631.
32. Stefaniˇ c G., Grzˇeta B., Musi´ c S. Influence of oxygen on the thermal behavior of the ZrO´ 2–Fe2O3 system. Mater. Chem. Phys., 2000, 65 (2), P. 216–221.
33. Stefaniˇ c G., Grzˇeta B., Nomura K., et al. The influence of thermal treatment on phase development in ZrO´ 2–Fe2O3 and HfO2–Fe2O3 systems. J. Alloys Compd., 2001, 327 (1–2), P. 151–160.
34. Jiang J.Z., Poulsen F.W., Mrup S. Structure and thermal stability of nanostructured iron-doped zirconia prepared by high-energy ball milling. J. Mater. Res., 1999, 14 (4), P. 1343–1352.
35. Cao W., Tan O.K., Zhu W., et al. An amorphous-like xα-Fe2O3–(1−x)ZrO2 solid solution system for low temperature resistive-type oxygen sensing. Sens. Actuators, B, 2001, 77 (1–2), P. 421–426.
36. Kiminami R.H.G. The monoclinic-tetragonal phase transformation of zirconia in the system ZrO2–Fe2O3. J. Mater. Sci. Lett., 1990, 9 (4), P. 373–374.
37. Bohe A.E., Andrade Gamboa J.J., Pasquevich D.M. Enhancement of the martensitic transformation of tetragonal zirconia powder in the´ presence of iron oxide. Mater. Sci. Eng., A, 1999, 273–275, P. 218–221.
38. Maglia F., Anselmi-Tamburini U., Spinolo G., Munir Z.A. Thermal Stability of Combustion-Synthesized Metastable Solid Solutions of Zirconia and Transition Metals. J. Mater. Synth. Process., 1999, 7 (5), P. 327–332.
39. Garcia F.L., de Resende V.G., De Grave E., et al. Iron-stabilized nanocrystalline ZrO2 solid solutions: Synthesis by combustion and thermal stability. Mater. Res. Bull., 2009, 44 (6), P. 1301–1311.
40. Pozhidaeva O.V., Korytkova E.N., Drozdova I.A., Gusarov V.V. Phase state and particle size of ultradispersed zirconium dioxide as influenced by conditions of hydrothermal synthesis. Russ. J. Gen. Chem., 1999, 69 (8), P. 1219–1222.
41. Patterson A.L. The Scherrer formula for x-ray particle size determination. Phys. Rev., 1939, 56 (10), P. 978–982.
42. Semenov V.G., Moskvin L.N., Efimov A.A. Analytical potential of Mossbauer spectroscopy.¨ Russ. Chem. Rev., 2006, 75 (4), P. 317–327.
43. Suzdalev I.P. Electrical and magnetic transitions in nanoclusters and nanostructures. KRASAND, Moscow, 2012, 480 p. (in Russian)
44. Gusarov V.V., Egorov F.K., Ekimov S.P., Suvorov S.A. Mossbauer study of the kinetics of the formation of film states in the interaction¨ of oxides of magnesium and iron. J. Phys. Chem., 1987, 61 (6), P. 1652–1654. (in Russian)
45. Gusarov V.V., Malkov A.A., Malygin A.A., Suvorov S.A. Thermally activated transformations of 2D nonautonomous phases and contradiction of polycrystalline oxide materials. Inorg. Mater., 1995, 31 (3), P. 320–323.
46. Gusarov V.V., Suvorov S.A. Melting points of locally equilibrium surface phases in polycrystalline systems based on a single volume phase. J. Appl. Chem. of the USSR, 1990, 63 (8), P. 1560–1565.
Review
For citations:
Kirillova S.A., Almjasheva O.V., Panchuk V.V., Semenov V.G. Solid-phase interaction in ZrO2–Fe2O3 nanocrystalline system. Nanosystems: Physics, Chemistry, Mathematics. 2018;9(6):763–769. https://doi.org/10.17586/2220-8054-2018-9-6-763-769