Sensitivity characteristics of germanene
https://doi.org/10.17586/2220-8054-2018-9-6-770-774
Abstract
In this paper, we investigate a sensitivity characteristics of germanene based on the tunneling current in the contact of a germanene with a metal or a superlattice. It is shown, that the sensitivity of the considered system to impurity molecules increases when a constant electric field is applied to it along the germanene plane.
About the Authors
N. N. KonobeevaRussian Federation
400062, Volgograd
M. B. Belonenko
Russian Federation
400062, Volgograd
References
1. Wu B., Zhang X., Huang B., Zhao Y., Cheng C., Chen H. High-performance wireless ammonia gas sensors based on reduced graphene oxide and nano-silver ink hybrid material loaded on a patch antenna. Sensors, 2017, 17, P. 2070.
2. Li W., Li F., Li H., Su M., Gao M., Li Y., Su D., Zhang X., Song Y. Flexible circuits and soft actuators by printing assembly of graphene. ACS Appl. Mater. Interfaces, 2016, 8, P. 12369–12376.
3. Lebedev A.A. Growth, study, and device application prospects of graphene on SiC substrates. Nanosystems: physics chemistry, mathematics, 2016, 7 (1), P. 30–36.
4. Karaduman I., Er E., C¸elikkan H., Erk N., Acar S. Room-temperature ammonia gas sensor based on reduced graphene oxide nanocomposites decorated by Ag, Au and Pt nanoparticles. J. Alloys Compd., 2017, 722, P. 569–578.
5. Su P.G., Yang, L.Y. NH3 gas sensor based on Pd/SnO2/RGO ternary composite operated at room-temperature. Sens. Actuators Chem., 2016, 223, P. 202–208.
6. Davila M.E., Xian L., Cahangirov S., Rubio A., Le Lay G. Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New Journal of Physics, 2014, 16, P. 095002.
7. Sheka E.F. Silicene is a phantom material. Nanosystems: physics, chemistry, mathematics, 2016, 7(6), P. 983–1001.
8. Xia W., Hu W., Liac Z., Yang J. A first-principles study of gas adsorption on germanene. Phys. Chem. Chem. Phys., 2014, 16, P. 22495.
9. Konobeeva N.N., Belonenko M.B. Sensitivity of graphene flakes and nanorings to impurities. Phys. B: Cond. Matter, 2017, 514, P. 51–53.
10. Konobeeva N.N., Belonenko M.B. Conductivity of impurity graphene nanoribbons and gate electric field. Mod. Phys. Lett. B, 2017, 31(2), P. 1750340.
11. Konobeeva N.N. Modeling of impurity influence on tunneling current in the contact of polymer with quantum dots and metal. Math. Phys. and Comp. Simul., 2017, 20(5), P. 89–93.
12. Esaki L. InAs-GaSb superlattices-synthesized narrow- gap semiconductors and semimetals. Lect. Not. Phys., 1980, 133(2), P. 302–323.
13. Dohler G.H. Doping superlattices (‘n-i-p-i Crystals’). IEEE J. Quant. Electron., 1986, 22(9), P. 1682–1685.
14. Ezawa M. A topological insulator and helical zero mode in silicene under an inhomogeneous electric field. New J. Phys., 2012, 14, P. 033003.
15. Ezawa M. Monolayer topological insulators: silicene, germanene, and stanene. J. Phys. Soc. Jpn., 2015, 84, P. 121003.
16. Kane C.L., Mele E.J. Quantum spin Hall effect in graphene. Phys. Rev. Lett., 2005, 95, P. 226801.
17. Levitov L.S. Shitov A.V. Green‘s functions. Problems and solutions. Fizmatlit, Moscow, 2003, 392 p.
18. Li H., Gao Zh., Lin W., He W., Li J., Yang Y. Improving the sensitive property of graphene-based gas sensor by illumination and heating. Sens. Rev., 2017, 37(2), P. 142–146.
Review
For citations:
Konobeeva N.N., Belonenko M.B. Sensitivity characteristics of germanene. Nanosystems: Physics, Chemistry, Mathematics. 2018;9(6):770–774. https://doi.org/10.17586/2220-8054-2018-9-6-770-774