Anionic redox effect on the electrochemical performance of LLNMC–CeO2–C nanocomposites
https://doi.org/10.17586/2220-8054-2018-9-6-775-782
Abstract
Li[Li0.13Ni0.2Mn0.47Co0.2]O2–CeO2 composites have been obtained by coprecipitation with CeO2 and by coating with ceria followed by coating with carbon film. STEM analysis revealed the formation of 20 – 30 nm ceria particles on the surface of LLNMC grains in all cases. Both carbon-coated LLNMC-CeO2 composites and carbon-free LLNMC coated with 1 % CeO2 demonstrated enhanced capacity values that could not be explained by the charge compensation via redox of nickel and cobalt. 5 % CeO2-coprecipitated sample demonstrated the most intense anomaly in CV at U = 4.1 – 4.5 V associated with redox processes in the anionic sublattice of LLNMC and a larger charge transfer resistance compared to other composites. The maximum values of Li+ diffusion coefficient have been observed for the samples coated with 1 % CeO2. The different electrochemical behavior of these samples could be explained by the different intensity of anionic redox processes in the samples with different amount of nanocrystalline ceria.
About the Authors
K. A. KurilenkoRussian Federation
119991 Moscow
D. I. Petukhov
Russian Federation
119991 Moscow
A. V. Garshev
Russian Federation
119991 Moscow
O. A. Shlyakhtin
Russian Federation
119991 Moscow
References
1. Li W., Song B., Manthiram A. High-voltage positive electrode materials for lithium-ion batteries. Chem. Soc. Rev., 2017, 46, P. 3006—3059.
2. Erickson E.M., Schipper F., Penki T.R., Shin J.Y., Erk C., Chesneau F.F., Markovsky B., Aurbach D. Review—Recent Advances and Remaining Challenges for Lithium Ion Battery Cathodes. II. Lithium-Rich, xLi2MnO3·(1-x)LiNiaCobMncO2. J. Electrochem. Soc., 2017, 164, P. A6341–A6348.
3. Koga H., Croguennec L., Menetrier M., Mannessiez P., Weill F., Delmas C., Belin S. Operando Xray Absorption Study of the Redox Processes Involved upon Cycling of the Li-Rich Layered Oxide Li1.20Mn0.54Co0.13Ni0.13O2 in Li Ion Batteries, J. Phys. Chem. C, 2014, 118, P. 5700–5709.
4. Lu Z., Dahn J.R. Understanding the Anomalous Capacity of Li/Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 Cells Using In Situ X-Ray Diffraction and Electrochemical Studies, J. Electrochem. Soc., 2002, 149, P. A815-A822.
5. Johnson C.S., Kim J-S., Lefief C., Li N., Thackeray M.M. The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3(1- x)LiMn0.5Ni0.5O2 electrodes, Electrochem. Comm., 2004, 6, P. 1085–1091.
6. Thackeray M.M. Kang S.-H., Johnson C.S. Vaughey J.T., Benedek R., Hackney S.A. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J. Mater. Chem., 2007, 17, P. 3112–3125.
7. Sathiya M., Rousse G., Ramesha K., Laisa C.P., Vezin H., Sougrati M.T., Doublet M-L., Foix D., Gonbeau D., Walker W., Prakash A.S., Ben Hassine M., Dupont L., Tarascon J-M. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nature Mater., 2013, 12, P. 827–835.
8. Oishi M., Yogi C., Watanabe I., Ohta T., Orikasa Y., Uchimoto Y., Ogumi Z. Direct observation of reversible charge compensation by oxygen ion in Li-rich manganese layered oxide positive electrode material, Li1.16Ni0.15Co0.19Mn0.50O2. J. Power Sources, 2015, 276, P. 89–94.
9. Luo K., Roberts M. R., Hao R., Guerrini N., Pickup D.M., Liu Y.-S., Edstrom K., Guo J., Chadwick A.V., Duda L.C., Bruce P.G., Charge-compensation in 3d-transition-metaloxide intercalation cathodes through the generation of localized electron holes on oxygen. Nature Chem., 2016, 8, P. 684–691.
10. Saubanere M., McCalla E., Tarascon J.-M., Doublet M.-L. The Intriguiging Question of Anionic Redox in High-Energy Density Cathodes for Li-ion Batteries. Energy Environ. Sci., 2016, 9, P. 984–991.
11. He F., Wang X., Du C., Baker A.P., Wu J, Zhang X. The effect of samaria doped ceria coating on the performance of Li1.2Ni0.13Co0.13Mn0.54O2 cathode material for lithium-ion battery. Electrochim. Acta, 2015, 153, P. 484–491.
12. Li G.R., Feng X., Ding Y., Ye S.H., Gao X.P. AlF3-coated Li(Li0.17Ni0.25Mn0.58)O2 as cathode material for Li-ion batteries. Electrochim. Acta, 2012, 78, P. 308–315.
13. Liu K., Yang G-L., Dong Y., Shi T., Chen L. Enhanced cycling stability and rate performance of Li[Ni0.5Co0.2Mn0.3]O2 by CeO2 coating at high cut-off voltage. J. Power Sources, 2015, 281, P. 370–377.
14. Kurilenko K.A., Shlyakhtin O.A., Petukhov D.I., Garshev A.V. Catalytic effect of nanostructured CeO2 coating on the electrochemical performance of Li(Li,Ni,Mn,Co)O2. Solid State Ionics, 2018, 324, P. 59–64.
15. Kurilenko K.A., Shlyakhtin O.A., Petukhov D.I., Garshev A.V. Effect of CeO2 coprecipitation on the electrochemical performance of Li(Li,Ni,Mn,Co)O2-CeO2-C composite cathode materials, J. Power Sources, 2017, 354, P. 189–199.
16. Wu F., Wang M., Su Y., Bao L., Chen S. Surface of LiCo1/3Ni1/3Mn1/3O2 modified by CeO2-coating, Electrochim. Acta, 2009, 54, P. 6803–6807.
17. Yuan W., Zhang H.Z., Liu Q., Li G.R., Gao X.P. Surface modification of Li(Li0.17Ni0.2Co0.05Mn0.58)O2 with CeO2 as cathode material for Li-ion batteries. Electrochim. Acta, 2014, 135, P. 199–207.
18. Xu Y., Li X., Wang Z., Guo H., Peng W., Pan W. The enhanced high cut-off voltage electrochemical performances of LiNi0.5Co0.2Mn0.3O2 by the CeO2 modification, Electrochim. Acta, 2016, 219, P. 49–60.
19. Assat G., Tarascon J.-M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nature Energy, 2018, 3, P. 373–386.
20. Xu J., Sun M., Qiao R., Renfrew S.E., Ma L., Wu T., Hwang S., Nordlund D., Su D, Amine K., Lu J, McCloskey B.D., Yang W., Tong W., Elucidating anionic oxygen activity in lithium-rich layered oxides, Nature Comm., 2018, 9, P. 947.
21. Levi M.D., Salitra G., Markovsky B., Teller H., Aurbach D., Heider U., Heiderb L. Solid-State Electrochemical Kinetics of Li-Ion Intercalation into Li1−2xCoO2: Simultaneous Application of Electroanalytical Techniques SSCV, PITT, and EIS. J. Electrochem. Soc., 1999, 146, P. 1279–1289.
22. Zhao S., Sun B., Yan K., Zhang J., Wang C., Wang G. Aegis of Lithium-Rich Cathode Materials via Heterostructured LiAlF4 Coating for High-Performance Lithium-Ion Batteries. ACS Appl. Mater. Interfaces, 2018, 10, P. 33260–33268.
Review
For citations:
Kurilenko K.A., Petukhov D.I., Garshev A.V., Shlyakhtin O.A. Anionic redox effect on the electrochemical performance of LLNMC–CeO2–C nanocomposites. Nanosystems: Physics, Chemistry, Mathematics. 2018;9(6):775–782. https://doi.org/10.17586/2220-8054-2018-9-6-775-782