Antioxidant properties of fullerenol-d
https://doi.org/10.17586/2220-8054-2018-9-6-798-810
Abstract
Fullerenol-d C60(OH)22−24 was synthesized by the method of direct heterogeneous oxidation of fullerene C60, dissolved in o-xylene, by NaOH, dissolved in water, in the presence of interphase catalyst OH. Identification of fullerenol-d was provided by: C–H–N elemental analysis, High performance liquid phase chromatography, IR – and Electronic spectroscopy, Mass-spectrometry. The antioxidant properties of aqueous fullerenol-d solutions were investigated against free radicals, generated by hydrogen peroxide and molecular I2. Measurement of fullerenol antioxidant activity was based on the potentiometric titration of fullerenol solutions by hydrogen peroxide and molecular I2 solutions and vice versa with compact Pt as working electrode. As a comparison, the very popular and strong anti-oxidant – ascorbic acid was used. Pourbaix Diagrams (pH −Eh) for hydrogen-oxygen and iodine forms were constructed. Fullerenol-d is a weaker antioxidant than ascorbic acid, but in contrast, fullerenols-d molecules are able to undergo multiply reversible absorption-desorption of some free radicals.
Keywords
About the Authors
D. P. TyurinRussian Federation
Moskovsky prospect, 26, Saint Petersburg, 190013
F. S. Kolmogorov
Russian Federation
Moskovsky prospect, 26, Saint Petersburg, 190013
I. A. Cherepkova
Russian Federation
Moskovsky prospect, 26, Saint Petersburg, 190013
N. A. Charykov
Russian Federation
Moskovsky prospect, 26, Saint Petersburg, 190013
ul. Professora Popova 5, 197376, Saint Petersburg
K. N. Semenov
Russian Federation
Moskovsky prospect, 26, Saint Petersburg, 190013
7/9 Universitetskaya emb., Saint Petersburg, 199034
V. A. Keskinov
Russian Federation
Moskovsky prospect, 26, Saint Petersburg, 190013
N. M. Safyannikov
Russian Federation
ul. Professora Popova 5, 197376, Saint Petersburg
Yu. V. Pukharenko
Russian Federation
2nd Krasnoarmeiskaya St. 4, 190005, Saint Petersburg
D. G. Letenko
Russian Federation
2nd Krasnoarmeiskaya St. 4, 190005, Saint Petersburg
T. A. Segeda
Kazakhstan
A.K. Protozanov Street, 69, Ust-Kamenogorsk city, 070004
Z. Shaimardanov
Kazakhstan
A.K. Protozanov Street, 69, Ust-Kamenogorsk city, 070004
References
1. Li J., Takeuchi A., Ozawa M., et al. C60 Fullerol Formation catalysed by Quaternary Ammonium Hydroxides. J. Chem. Soc. Commun., 1993, 23, P. 1784–1785.
2. Pinteala M., Dascalu A., Ungurenasu C. Binding fullerenol C60(OH)24 to dsDNA. Int. J. Nanomedicine, 2009, 4, P. 193–199.
3. Chiang L.Y., Bhonsle J.B., et al. Efficient one-flask synthesis of water-soluble [60] fullerenols. Tetrahedron, 1996, 52, P. 4963–4672.
4. Chiang L.Y., Upasani R.B., Swirczewski J.W. Versatile nitronium chemistry for C60 fullerene functionalization. J. Am. Chem. Soc., 1992, 114, P. 10154–10157.
5. Meier M.S., Kiegiel J. Preparation and characterization of thefullerene diols 1,2–C60(OH)2, 1,2–C70(OH)2, and 5,6–C70(OH)2. Org. Lett., 2001, 3, P. 1717–1719.
6. Szymanska L., Radecka H., Radecki J., Kikut-Ligaj D. Fullerene modified supported lipid membrane as sensitive element of sensor for odorants. Biosens. Bioelectron, 2001, 16, P. 911–915.
7. Mirkov S.M., Djordjevic, A.N., et al. Nitric oxidescavenging activity of polyhydroxylated fullerenol, C60OH24. Nitric Oxide, 2004, 11, P. 201–207.
8. Kokubo K., Matsubayashi K., et al. ACS Nano, 2008, 2, P. 327–333.
9. Anderson R., Barron A.R. Reaction of hydroxyfullerene with metal salts: a route to remediation and immobilization. J. Am. Chem. Soc., 2005, 127 (30), P. 10458–10459.
10. Kokubo K., Shirakawa S., et al. Facile and scalable synthesis of a highly hydroxylated water-soluble fullerenol as a single nanoparticle. Nano Research, 2011, 4 (2), P. 204–215.
11. Yao L., Kang F., Peng Q., Yang X. An improved method for fullerol preparation based on dialysis. Chinese Journal of Chemical Engineering, 2010, 18 (5), P. 876–879.
12. Huang H.-M., Ou H.-C., Hsieh S.-J., Chiang L.-Y. Blockage of amyloid beta peptide-induced cytosolic free calcium by fullerenol-1, carboxylate C60 in PC12 cells. Life Sciences, 2000, 66 (16), P. 1525–1533.
13. Roberts J.E., Wielgus A.R., et al. Phototoxicity and cytotoxicity of fullerol in human lens epithelial cells. Toxicology and Applied Pharmacology, 2008, 228 (1), P. 49–58.
14. Isakovic A., Markovic Z., Todorovic-Marcovic B., et al. Distinct cytotoxic mechanisms of pristine versus hydroxylated fullerene. Toxicological Sciences, 2006, 91 (1), P. 173–183.
15. Johnson-Lyles D.N., Peifley K., Lockett S., et al. Fullerenol cytotoxicity in kidney cells is associated with cytoskeleton disruption, autophagic vacuole accumulation, and mitochondrial dysfunction. Toxicology and Applied Pharmacology, 2010, 248 (3), P. 249–258.
16. Wang S., He P., et al. Novel and efficient synthesis of water-soluble [60]fullerenol by solvent-free reaction. Synthetic Communications, 2005, 35 (13), P. 1803–1808.
17. Piotrovskij L.B., Kiselev O.I. Fullerenes in biology. Rostok: Saint Petersburg, 2006.
18. Semenov K.N., Charykov N.A., Keskinov V.A. Fullerenol-70-d: Synthesis, identification, poly-thermal solubility and density of water solutions. Nanosystems: physics, chemistry, mathematics, 2012, 3 (6), P. 146–156.
19. Assemi S., Tadjiki S., et al. Aggregation of fullerol C60(OH)24 nanoparticles as revealed using flow field-flow fractionation and atomic force microscopy. Langmuir, 2010, 26 (20), P. 16063–16070.
20. Vileno B., Marcoux P.R., et al. Spectroscopic and photophysical properties of a highly derivatized C60 fullerol. Advanced Functional Materials, 2006, 16 (1), P. 120–128.
21. Schneider N.S., Darwish A.D., et al. Formation of fullerols via hydroboration of fullerene-C60. Journal of the Chemical Society, Chemical Communications, 1994, 4, P. 463–464.
22. Semenov K.N., Charykov N.A., Letenko D.G., et al. Solubility and Some Properties of Aqueous Solutions of Fullerenol-d and Crystal Hydrates. Rus. J. of Appl. Chem., 2011, 84 (1), P. 44–49.
23. Semenov K.N., Charykov N.A., Letenko D.G., et al. Electrochemical Properties of Aqueous Solutions of Fullerenol-d. Rus. J. of Appl. Chem., 2011, 84 (1), P. 79–83.
24. Letenko D.G., Nikitin V.A., et al. Study of Aqueous Solutions of Fullerenol-d by the Dymamic Light Scattering Method. Rus. J. of Appl. Chem., 2011, 84 (1), P. 50–53.
25. Ioutsi V., Sokolov S.A., Semivrazskhaya O.O., et al. Synthesis and antioxidative properties of some fullerene C60 derivatives. Reports RGMU. Medical biological problems, 2012, 5, P. 76–82.
26. Zhang J.-M., Yang W., He P., Zhu S.-Z. Efficient and convenient preparation of water-soluble fullerenol. Chinese Journal of Chemistry, 2004, 22 (9), P. 1008–1011.
27. Semenov K.N., Charykov N.A., Keskinov V.A. Fullerenol Synthesis and Identification. Properties of Fullerenol Water Solutions. J. Chem. Eng. Data, 2011, 56, P. 230–239.
28. Semenov K.N., Charykov N.A., et al. The Synthesis and Identification of Mixed Fullerenol Prepared by the Direct One-Stage Oxidation of Fullerene Black. Rus. J. Phys. Chem., 2011, 85 (6), P. 1009–1015.
29. Semenov K.N., Charykov N.A., Letenko D.G., et al. Synthesis and protecting action of fullerenol-d. II. Modification of water soluble priming enamel. Phys. Chem. of Surface and Metal Protection, 2012, 48 (3), P. 286–292.
30. Letenko D.G., Nikitin V.A., et al. Conductivity of Aqueos Solutions of Fullerol Synthesized by Direct Oxidation. Rus. J. Phys. Chem., 2012, 86 (12), P. 1806–1813.
31. Semenov K.N., Charykov N.A. Solubility Diagram of a Fullerenol-dNaClH2O System at 25 C. Rus. J. Phys. Chem., 2012, 86 (10), P. 1636–1639.
32. Semenov K.N., Charykov N.A., et al. Synthesis of Fullerenol-70-d by Direct Oxidation and Its Identification. Rus. J. Of Gen. Chem., 2013, 83 (4), P. 674–678.
33. Semenov K.N., Kanterman I.G., et al. SolidLiquid Phase Equilibria in the Fullerenol-dCuCl2H2O System at 25 C. Russian Journal of Physical Chemistry, 2014, 88 (6), P. 1073–1076.
34. Semenov K.N., Kanterman I.G., Charykov N.A., et al. Solubility in ternary system fullerenol-d-uranil sulphate–water at 25 . Radiochemistry, 2014, 56 (5), P. 421–422. (In Russian)
35. Zolotarev A.A., Lushin A.I., et al. Impact resistance of cement and gypsum plaster nanomodified by water-soluble fullerenols. Industrial and engineering chemical research, 2013, 52, P. 14583–14591.
36. Semenov K.N., Keskinov V.A., et al. The fullerenol-d solubility in the fullerenol-d-inorganic salt-water ternary systems at 250C. Industrial and engineering chemical research, 2013, 52, P. 16095–16100.
37. Semenov K.N., Kanterman I.G., et al. SolidLiquid Phase Equilibria in the Fullerenol-d-CuCl2-H2O System at 25 C. Russian Journal of Physical Chemistry, 2014, 88 (6), P. 1073–1076.
38. Semenov K.N., Charykov N.A., Murin I.V., Pukharenko Yu.V. Physico-chemical properties of the fullerenol-70 water solutions. J. of Molecular Liquids, 2015, 202, P. 1–8.
39. Tyurin D.P., Semenov K.N., et al. Dissociation of Fullerenol-70-d in Aqueous Solutions and Their Electric Conductivity. Russian Journal of Physical Chemistry A, 2015, 89 (5), P. 771–775.
40. Panova G.G., Ktitorova I.N., et al. Impact of polyhydroxy fullerene (fullerol or fullerenol) on growth and biophysical characteristics of barley seedlings in favourable and stressful conditions. Plant Growth Regulation. An International Journal on Plant Growth and Development, 2015, 77 2016, 79 (3), P. 309–318.
41. Charykov N.A., Semenov K.N., et al. Excess thermodynamic functions in aqueous systems containing soluble fullerene derivatives. J. of Molecular Liquids, 2018, 256, P. 305–311.
42. Djordjevic A., Srdjenovic B., et al. Review of Synthesis and Antioxidant Potential of Fullerenol Nanoparticles. Journal of Nanomaterials, 2015, 567073, 15 pp.
43. Lao F., Chen L., Li W., et al. Fullerene nanoparticles selectively enter oxidation-damaged cerebral microvessel endothelial cells and inhibit JNK-related apoptosis. ACS Nano, 2009, 3 (11), P. 3358–3368.
44. Yin J.-J., Lao F., Fu P.P., et al. The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials. Biomaterials, 2009, 30 (4), P. 611–621.
45. Caputo F., De Nicola M., Ghibelli L. Pharmacological potential of bioactive engineered nanomaterials. Biochemical Pharmacology, 2014, 92 (1), P. 112–130.
46. Djordjevic A., Canadanovic-Brunet J.M., Vojinovic-Miloradov M., Bogdanovic G. Antioxidant properties and hypothetic radical mechanism of fullerenol C60(OH)24. Oxidation Communications, 2004, 27 (4), P. 806–812.
47. Kokubo K. Water-Soluble Single-Nano Carbon Particles: Fullerenol and Its Derivatives, InTech, 2012.
48. Kato S., Aoshima H., Saitoh Y., Miwa N. Highly hydroxylated or -cyclodextrin-bicapped water-soluble derivative of fullerene: the antioxidant ability assessed by electron spin resonance method and -carotene bleaching assay. Bioorganic and Medicinal Chemistry Letters, 2009, 19 (18), P. 5293–5296.
49. Ueno H., Yamakura S., et al. Systematic evaluation and mechanistic investigation of antioxidant activity of fullerenols using carotene bleaching assay-carotene bleaching assay. Journal of Nanomaterials, 2014, 2014, 802596, 7 pp.
50. Dordevic A., Bogdanovi´ c G. Fullerenol: a new nanopharmaceutic?´ Archive of Oncology, 2008, 16 (3–4), P. 42–45.
51. Pickering K.D., Wiesner M.R. Fullerol-sensitized production of reactive oxygen species in aqueous solution. Environmental Science and Technology, 2005, 39 (5), P. 1359–1365.
52. Zhao B., Bilski P.J., et al. Photo-induced reactive oxygen species generation by different water-soluble fullerenes (C60) and their cytotoxicity in human keratinocytes. Photochemistry and Photobiology, 2008, 84 (5), P. 1215–1223.
53. Zhao B., He Y.-Y., et al. Difference in phototoxicity of cyclodextrin complexed fullerene [(γ-CyD)2/C60] and its aggregated derivatives toward human lens epithelial cells. Chemical Research in Toxicology, 2009, 22 (4), P. 660–667.
54. Pourbaix M. Thermodynamics and corrosion. Corrosion Science, 1990, 3 (1), No. 10, P. 963–988.
55. Remi G. Course of Inorganic Chemistry, volume 2. Moscow, Mir, 1955. (In Russian)
56. Ball E.G. Studies on oxidation reduction. XXIII. Ascorbic acid. J. Biol. Chem., 1939, 118, P. 219–239.
57. Borsook H., Davenport H.W., et al. The Oxidation of Ascorbic Acid and Its in Vitro and in Vivo. J. Biol. Chem., 1937, 117, (1), P. 237–279.
58. Brief reference book of physical and chemical quantities. Ed.: A.A. Ravdel, A.M. Ponomareva. Moscow, OOO TID Az-book, 2009, 237 pp.
Review
For citations:
Tyurin D.P., Kolmogorov F.S., Cherepkova I.A., Charykov N.A., Semenov K.N., Keskinov V.A., Safyannikov N.M., Pukharenko Yu.V., Letenko D.G., Segeda T.A., Shaimardanov Z. Antioxidant properties of fullerenol-d. Nanosystems: Physics, Chemistry, Mathematics. 2018;9(6):798–810. https://doi.org/10.17586/2220-8054-2018-9-6-798-810