Quasi free-standing one-dimensional nanocrystals of PbTe grown in 1.4 nm SWNTs
https://doi.org/10.17586/2220-8054-2015-6-6-850-856
Abstract
Here, we show successful filling of 1.4 nm single-walled carbon nanotubes (SWNT) with PbTe nanocrystals. The structure of one-dimensional PbTe in SWNT was determined using high-resolution transmission electron microscopy (HRTEM). The electronic structure of composites was studied by optical absorbance and Raman spectroscopies indicating no noticeable interaction of encapsulated PbTe with SWNT wall. Experimental data are supported by ab-initio calculations, showing non-zero density of states at the Fermi level of PbTe@SWNT(10,10) provided by both SWNT and PbTe states and thus metallic conductivity of the composite.
Keywords
About the Authors
A. V. LukashinRussian Federation
119992, Moscow
N. S. Falaleev
Russian Federation
119992, Moscow
N. I. Verbitskiy
Russian Federation
119992, Moscow
A-1090 Vienna, Austria
A. A. Volykhov
Russian Federation
119992, Moscow
I. I. Verbitskiy
Russian Federation
119992, Moscow
L. V. Yashna
Russian Federation
119992, Moscow
A. S. Kumskov
Russian Federation
119333, Moscow
N. A. Kiselev
Russian Federation
119333, Moscow
A. A. Eliseev
Russian Federation
119992, Moscow
References
1. P.G. Collins, H. Bando, A. Zettl. Nanoscale electronic devices on carbon nanotubes. Nanotechnology, 1998, 9 (3), P. 153–157.
2. L. Chico, V.H. Crespi, et al. Pure Carbon Nanoscale Devices: Nanotube Heterojunctions. Phys. Rev. Lett., 1996, 76 (6), P. 971–974.
3. T.W. Ebbesen, H.J. Lezec, et al. Electrical conductivity of individual carbon nanotubes. Nature, 1996, 382, P. 54–56.
4. M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature, 1996, 381 (6584), P. 678–680.
5. P. Chaturvedi, P. Verma, et al. Carbon Nanotube–Purification and Sorting Protocols. Def. Sci. J., 2008, 58 (5), P. 591–599.
6. M. Weissmann, G. Garca, et al. Theoretical study of iron-filled carbon nanotubes. Phys. Rev. B, 2006, 73, (12), P. 125435.
7. M. Mahmudur Rahman, M. Kisaku, et al. Electric and Magnetic Properties of Co-filled Carbon Nanotube. J. Phys. Soc. Jpn., 2005, 74 (2), P. 742–745.
8. A.S. Kumskov, V.G. Zhigalina, et al. The structure of 1D and 3D CuI nanocrystals grown within 1.5 – 2.5 nm single wall carbon nanotubes obtained by catalyzed chemical vapor deposition. Carbon, 2012, 50 (12), P. 4696–4704.
9. L.V. Yashina, A.A. Eliseev, et al. Growth and Characterization of One-Dimensional SnTe Crystals within the Single-Walled Carbon Nanotube Channels. J. Phys. Chem. C, 2011, 115 (9), P. 3578–3586.
10. A.S. Kumskov, A.A. Eliseev, B. Freitag, N.A. Kiselev. HRTEM of 1DSnTe@SWNT nanocomposite located on thin layers of graphite. J. Microsc., 2012, 248 (2), P. 117–119.
11. T. Fujimori, A. Morelos-Gmez, et al. Conducting linear chains of sulphur inside carbon nanotubes. Nat. Commun., 2013, 4, P. 2162.
12. A. Eliseev, L. Yashina, M. Kharlamova, N. Kiselev. One-Dimensional Crystals inside Single-Walled Carbon Nanotubes: Growth, Structure and Electronic Properties. In Electronic Properties of Carbon Nanotubes, ed. by J. M. Marulanda, InTech, 2011.
13. H.J. Monkhorst, J.D. Pack. Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13 (12), P. 5188–5192.
14. H. Kataura, Y. Kumazawa, et al. Optical properties of single-wall carbon nanotubes. Synthetic Metals, 1999, 103 (1), P. 2555–2558.
15. S. Piscanec, M. Lazzeri, et al. Optical phonons in carbon nanotubes: Kohn anomalies, Peierls distortions, and dynamic effects. Phys. Rev. B, 2007, 75 (3), P. 035427.
16. A.A. Eliseev, L.V. Yashina, et al. Interaction between single walled carbon nanotube and 1D crystal in CuX@SWCNT (X = Cl, Br, I) nanostructures. Carbon, 50 (11), P. 4021–4039.
Review
For citations:
Lukashin A.V., Falaleev N.S., Verbitskiy N.I., Volykhov A.A., Verbitskiy I.I., Yashna L.V., Kumskov A.S., Kiselev N.A., Eliseev A.A. Quasi free-standing one-dimensional nanocrystals of PbTe grown in 1.4 nm SWNTs. Nanosystems: Physics, Chemistry, Mathematics. 2015;6(6):850-856. https://doi.org/10.17586/2220-8054-2015-6-6-850-856