Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Boron-doped anatase: electronic band structure, boron atom locations and magnetic state

Abstract

The first-principle spin-resolved GGA and GGA+U calculations for the electronic band structure of the boron-doped TiO2 with anatase structure have been performed. The locations of boron atoms in the interstitial and oxygen position have been studied. We have found two interstitial positions: a stable one with three neighboring oxygen atoms, and a metastable one in the center of the flattened tetrahedron of oxygen atoms. The boron location in interstitial position is energetically more favorable than the location inside the oxygen position. In accordance with experiments, the GGA+U approach produces spin-polarized solutions for interstitial boron positions, whereas the GGA approach fails to produce a spin-polarized solution.

About the Author

V. P. Zhukov
Institute of Solid State Chemistry, Urals Branch of the Russian Academy of Sciences
Russian Federation

Ekaterinburg



References

1. Carp O. , Huisman C., Reller A. Photoinduces reactivity of titanium dioxide. Progress in Solid State Chemistry, 32, P. 33–177 (2004).

2. Diebold O. The surface science of titanium dioxide. Surface Science Reports, 48,P. 53–229 (2003).

3. Zaleska A. Doped-TiO2: A review. Recent Patents on Engineering, 2 (3), P. 157–164 (2008).

4. Zhao W., Ma W., Chen C., Zhao J., Shuai Z. Efficient Degradation of Toxic Organic Pollutants with Ni2O3 /TiO2−xBx under Visible Irradiation. JACS communications, 126, P. 4782–4783 (2004).

5. In S., Orlov A., et al. Effective Visible Light-Activated B-Doped and B,N-Codoped TiO2 Photocatalysts. J. Am. Chem. Soc., 129 (45), P. 13790–13791 (2007).

6. Yuan J., Wang E., et al. Doping mode, band structure and photocatalytic mechanism of BN-codoped TiO2. Applied Surface Science, 257 (16), P. 7335–7342 (2011).

7. Gombac V., Rogatis L.D., et al. TiO2 nanopowders doped with boron and nitrogen for photocatalytic applications. Chemical Physics, 339, P. 111–123 (2007).

8. Feng N., Zheng A., et al. Boron Environments in B-Doped and (B, N)-Codoped TiO2 Photocatalysts: A Combined Solid-State NMR and Theoretical Calculation Study. J. Phys. Chem. C., 115 (6), P. 2709– 2719 (2011).

9. Bettinelli M., Dallacasa V., et al. Photocatalytic activity of TiO2 doped with boron and vanadium. J. Hazard. Mater., 146, P. 529–534 (2007).

10. Chen D., Yang D., Wang Q., Jiang Z. Effects of Boron Doping on Photocatalytic Activity and Microstructure of Titanium Dioxide Nanoparticles. Ind. Eng. Chem. Res., 45 (12), P. 4110–4116 (2006).

11. Fittipaldi M., Gombac V., et al. A high-frequency (95 GHz) electron paramagnetic resonance study of B-doped TiO2 photocatalysts. Inorg. Chim. Acta, 361, P. 3980–3987 (2008).

12. Geng H., Yin S., et al. Geometric and electronic structures of the boron-doped photocatalyst TiO2. J. Phys. C: Condens. Matter, 18, P. 87–96 (2006).

13. Yang K., Dai Y., Huang B. Origin of the photoactivity in boron-doped anatase and rutile TiO2 calculated from first principles. Phys. Rev. B, 76 (19), P. 195201 (2007).

14. Cao L, Huang A., Spiess F.-J., Suib S.L. Gas-Phase Oxidation of 1-Butene Using Nanoscale TiO2 Photocatalysts. Journ. of Catalysis, 188 (1), P. 48–57 (1999).

15. Soria J., Sanz J., et al. Water-Hydroxyl Interactions on Small Anatase Nanoparticles Prepared by the Hydrothermal Route. Journ. Phys. Chem. C, 114 (39), P. 16534–16540 (2010) .

16. Zhukov V., Zainullina V. Electronic structure, optical properties and photocatalityc activity of the oxide semiconductors. - Saarbr¨uken: Lambert Academic Publishing, 2013, 86 p.

17. Quantum espresso, http://www.quantum-espresso.org and http://www.pwscf.org (2010).

18. Baroni S., de Gironcoli S., Corso A.D. Phonons and related crystal properties from density-functional perturbation theory. Rev. of Modern Physics, 73 (2), P. 515–562 (2001).

19. Perdew J, Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett., 77 (18), P. 3865–3868 (1996).

20. Cococcioni M., de Gironcoli S. Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys. Rev. B, 71 (3), P. 035105 (2005).

21. Zhukov V., Zainullina V., Chulkov E. Ab initio approach to structural, electronic and optical properties of B-, C- and N-doped anatase. Int. J. of Modern Physics, 24 (31), P. 6049–6067 (2010).


Review

For citations:


Zhukov V.P. Boron-doped anatase: electronic band structure, boron atom locations and magnetic state. Nanosystems: Physics, Chemistry, Mathematics. 2014;5(4):509-516.

Views: 7


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)