Structural changes in industrial glassy carbon as a function of heat treatment temperature according to Raman spectroscopy and X-ray diffraction data
Аннотация
Changes in the structure of glassy carbon as a function of heat treatment temperature is investigated by Raman spectroscopy and X-ray diffraction measurements. It is shown that the glassy carbon samples studied can be described as poorly ordered turbostratic nanographite. An increase in temperature leads to some ordering with preservation of the general structural motif. Based on spectroscopic evidence, graphene sheet curvature in the high-temperature glassy carbon samples is suggested.
Об авторах
S. BukalovРоссия
Ya. Zubavichus
Россия
L. Leites
Россия
A. Sorokin
Россия
A. Kotosonov
Россия
Список литературы
1. IUPAC Recommended terminology for the description of carbon as a solid. Pure and Appl. Chem., 67, P. 474–506 (1995).
2. V.P. Sosedov, E.F. Chalykh. Graphitation of carbon materials. Metallurgy, Moscow, 176 p. (1987). [in Russian]
3. Carbon Materials for Advanced Technologies, ed. by Burchell T.D. Pergamon, Amsterdam, 535 p. (1999).
4. R. Franklin. The structure of graphitic carbons. Acta Cryst., 4, P. 253–261 (1951).
5. G.M. Jenkins, K. Kawamura, L.L. Ban. Formation and structure of polymeric carbons. Proc. Roy. Soc. A, 327, P. 501–517 (1972).
6. L.A. Pesin, E.M. Baitinger. A new structural model of glass-like carbon. Carbon, 40, P. 295–306 (2002).
7. P.J.F. Harris. Fullerene-related structure of commercial glassy carbons. Phylos. Mag., 84(29), P. 3159– 3167 (2004). P.J.F. Harris. New perspectives on the structure of graphitic carbons. Solid State Mater. Sci., 30, P. 235–253 (2005).
8. P.M. Ossi, A. Miotello. Control of cluster synthesis in nano-glassy carbon films. J. Non-Cryst. Solids, 353, P. 1860–1864 (2007).
9. R.C. Powles, N.A. Marks, D.W.M. Lau. Self-assembly of sp2-bonded carbon nanostructures from amorphous precursors. Phys. Rev. B, 79, P. 075430 (2009).
10. T.C. Petersen, I.K. Snook, I. Yarovsky, D.G. McCulloch, B. O’Malley. Curved-surface atomic modeling of nanoporous carbon. J. Phys. Chem. C, 111(2), P. 802–812 (2007).
11. F. Tuinstra, J.L. Koenig. Raman spectrum of graphite. J. Chem. Phys., 53, P. 1126–1130 (1970).
12. J.L. Lauer. Raman spectra of quasi-elemental carbon. In: Handbook of Raman Spectroscopy, ed. by Lewis I.R., Edwards H.G.M. Marcel Dekker Inc., N-Y, Basel, ch.22, P. 863–917 (2001).
13. A.C. Ferrari, J. Robertson. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B, 61, P. 14095 (2000); Resonant Raman spectroscopy of disordered, amorphous and diamondlike carbon. Phys. Rev. B, 64, P. 075414 (2001).
14. R.J. Nemanich, S.A. Solin. First- and second-order Raman scattering from finite-size crystals of graphite. Phys. Rev. B, 20, P. 392–401 (1979).
15. R.P. Vidano, D.B. Fischbach, L.J. Willis, T.M. Loehr. Observation of Raman band with excitation wavelength for carbons and graphites. Solid State Commun., 39, P. 341–344 (1981).
16. A.V. Baranov, A.N. Bekhterev, Ya.S. Bobovich, V.I. Petrov. Interpretation of some peculiarities in the Raman spectra of graphite and glassy carbon. Optics and Spectroscopy, 62(5), P. 1036–1041 (1987). [in Russian]
17. S.V. Kholodkevich, V.I. Beryozkin, V.Yu. Davydov. Peculiarities of the structure and temperature persistence of shungite carbon to graphitation. Phys. Solid State, 41, P. 1291–1294 (1999); S.V. Kholodkevich, V.V. Poborchii. Raman spectra and enhanced stability of natural glassy carbon of shungites. JETP Lett., 20, P. 22–25 (1994).
18. A. Cuesta, P. Dhamelincourt, J. Laureyns, A. Martınez-Alonsoa, J.M.D. Tasc´on. Comparative performance of X-ray diffraction and Raman microprobe techniques for the study of carbon materials. J. Mater. Chem., 8, P. 2875–2879 (1998).
19. H. Wilhelm, M. Lelaurain, E. McRae, B. Humbert. Raman spectroscopic studies on well-defined carbonaceous materials of strong two-dimensional character. J. Appl. Phys., 84, P. 6552–6558 (1998).
20. S.S. Bukalov, L.A. Mikhalitsyn, Y.V. Zubavichus, L.A. Leites, Yu.N. Novikov. The study of the structure of graphites and some other sp2 carbon materials by the methods of micro-Raman spectroscopy and X-ray diffractometry. Mendeleev Chem. J., 1, P. 83–91 (2006). [in Russian]
21. B.E. Warren. X-ray diffraction in random layer lattices. Phys. Rev., 59, P. 693–701 (1941).
22. B.E. Warren, P. Bodenstein. The diffraction pattern of fine particle carbon blacks. Acta Crystallogr., 18, P. 282–287 (1965).
23. P.H. Tan, S. Dimovsky, Yu. Gogotsi. Raman scattering of non-planar graphite: arched edges, polyhedral crystals, whiskers and cones. Phil. Trans. R. Soc. Lond. A, 362, P. 2289–2310 (2004).
24. D. Roy, M. Chhowalla, H. Wang, N. Sano. Characterization of carbon nano-onions using Raman spectroscopy. Chem. Phys. Lett., 373, P. 52–56 (2003).
Рецензия
Для цитирования:
, , , , . Наносистемы: физика, химия, математика. 2014;5(1):186-191.
For citation:
Bukalov S.S., Zubavichus Ya.V., Leites L.A., Sorokin A.I., Kotosonov A.S. Structural changes in industrial glassy carbon as a function of heat treatment temperature according to Raman spectroscopy and X-ray diffraction data. Nanosystems: Physics, Chemistry, Mathematics. 2014;5(1):186-191.