Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Subwavelength LIPSS-based nanopatterning of thin titanium films

https://doi.org/10.17586/2220-8054-2025-16-6-755-762

Abstract

Precise nanopatterning of thin films is an important task in production of modern optoelectronics and photonics elements. Direct recording of laser-induced periodic surface structures (LIPSS) is a promising tool for direct subwavelength nanopatterning. Recent studies show that the dynamics of LIPSS formation changes significantly if the film is relatively thin. Here we present a comprehensive analytical model aiming to bridge the gap between the expected dynamics of electromagnetic fields during LIPSS formation and experimentally obtainable nanopatterning results. The phenomenological model of surface electromagnetic wave (SEW) propagation at the film–substrate interface illustrates the mechanism of LIPSS formation using a periodic distribution of SEW energy concentration. SEW features are calculated depending on metal film thickness, and positive feedback between the local thickness of the growing oxide layer and the SEW energy concentration is unveiled. Changes in LIPPS formation mechanisms are confirmed experimentally on titanium films with different thickness. These findings shed light on the intrinsic physical mechanisms of LIPSS formation on thin metal films and ease the possibilities for LIPPS applications for nanopatterning.

About the Authors

A. S. Khramov
ITMO University
Russian Federation

Andrey S. Khramov

St. Petersburg, 197101



M. D. Vasilev
ITMO University
Russian Federation

Maksim D. Vasilev

St. Petersburg, 197101



D. A. Sinev
ITMO University
Russian Federation

Dmitry A. Sinev

St. Petersburg, 197101



E. A. Shakhno
ITMO University
Russian Federation

Elena A. Shakhno

St. Petersburg, 197101



References

1. Feng E., Zhang C., Chang J., Han Y., Li H., Luo Q., Ma C.Q., Yip H.L., Ding L., Yang J. A 16.10 % efficiency organic solar module with ultra-narrow interconnections fabricated via nanosecond ultraviolet laser processing. Cell Reports Physical Science, 2024, 5 (3), 101883.

2. Nirmal A., Kyaw A.K.K., Jianxiong W., Dev K., Sun X., Demir H.V. Light Trapping in Inverted Organic Photovoltaics with Nanoimprinted ZnO Photonic Crystals. IEEE J. of Photovoltaics, 2017, 7 (2), P. 545–549.

3. Dang S., Ye H. A visible-infrared-compatible camouflage photonic crystal with heat dissipation by radiation in 5–8 µm. Cell Reports Physical Science, 2021, 2 (11), 100617.

4. Bronnikov K., Terentyev V., Simonov V., Fedyaj V., Simanchuk A., Babin S.A., Lapidas V., Mitsai E., Cherepakhin A., Zhang J., Zhizhchenko A. Highly Regular Laser-Induced Periodic Surface Structures on Titanium Thin Films for Photonics and Fiber Optics. ACS Applied Materials & Interfaces, 2024, 16 (50), P. 70047–70056.

5. Dostovalov A., Bronnikov K., Korolkov V., Babin S., Mitsai E., Mironenko A., Tutov M., Zhang D., Sugioka K., Maksimovic J., Katkus T. Hierarchical anti-reflective laser-induced periodic surface structures (LIPSSs) on amorphous Si films for sensing applications. Nanoscale, 2020, 12 (25), P. 13431–13441.

6. Banerjee D., Akkanaboina M., Kanaka R.K., Soma V.R. Femtosecond Bessel beam induced ladder-like LIPSS on trimetallic surface for SERSbased sensing of Tetryl and PETN. Applied Surface Science, 2023, 616, 156561.

7. Pan X., Zhou L., Hu D., He W., Liu P., Yu Z., Liang X. Superior wear resistance in cast aluminum alloy via femtosecond laser induced periodic surface structures and surface hardening layer. Applied Surface Science, 2023, 636, 157866.

8. Sotelo L., Fontanot T., Vig S., Herre P., Yousefi P., Fernandes M.H., Sarau G., Leuchs G., Christiansen S. Influence of initial surface roughness on LIPSS formation and its consecutive impact on cell/bacteria attachment for TiAl6V4 surfaces. Advanced Materials Technologies, 2023, 8 (12), 2201802.

9. Andreeva Y.M., Luong V.C., Lutoshina D.S., Medvedev O.S., Mikhailovskii V.Y., Moskvin M.K., Odintsova G.V., Romanov V.V., Shchedrina N.N., Veiko V.P. Laser coloration of metals in visual art and design. Optical Materials Express, 2019, 9 (3), P. 1310–1319.

10. Ibrahim Q., Andreeva Y., Suvorov A., Khmelenin D., Grigoryev E., Shcherbakov A.A., Sinev D. Laser fabrication of 1D and 2D periodic subwavelength gratings on titanium films. Optics & Laser Technology, 2024, 174, 110642.

11. Bonse J., Graf S. Maxwell meets Marangoni – a review of theories on laser-induced periodic surface structures. ¨ Laser & Photonics Reviews, 2020, 14 (10), 2000215.

12. Oktem B., Pavlov I., Ilday S., Kalaycıo ¨ glu H., Rybak A., Yavas¸ S., Erdo ˘ gan M., Ilday F. ˘ O. Nonlinear laser lithography for indefinitely large-area ¨ nanostructuring with femtosecond pulses. Nature Photonics, 2013, 7 (11), P. 897–901.

13. Sinev D.A., Yuzhakova D.S., Moskvin M.K., Veiko V.P. Formation of the submicron oxidative LIPSS on thin titanium films during nanosecond laser recording. Nanomaterials, 2020, 10 (11), 2161.

14. Belousov D.A., Bronnikov K.A., Okotrub K.A., Mikerin S.L., Korolkov V.P., Terentyev V.S., Dostovalov A.V. Thermochemical laser-induced periodic surface structures formation by femtosecond laser on Hf thin films in air and vacuum. Materials, 2021, 14 (21), 6714.

15. Yang H.Z., Jiang G.D., Wang W.J., Mei X.S., Pan A.F., Zhai Z.Y. Picosecond laser fabrication of nanostructures on ITO film surface assisted by pre-deposited Au film. Applied Physics B, 2017, 123 (10), 251.

16. Dostovalov A.V., Derrien T.J.-Y., Lizunov S.A., Pˇreucil F., Okotrub K.A., Mocek T., Korolkov V.P., Babin S.A., Bulgakova N.M. LIPSS on thin ˇ metallic films: New insights from multiplicity of laser-excited electromagnetic modes and efficiency of metal oxidation. Applied Surface Science, 2019, 491, P. 650–658.

17. Dostovalov A.V., Korolkov V.P., Okotrub K.A., Bronnikov K.A., Babin S.A. Oxide composition and period variation of thermochemical LIPSS on chromium films with different thickness. Optics Express, 2018, 26 (6), P. 7712–7723.

18. Bronnikov K., Gladkikh S., Okotrub K., Simanchuk A., Zhizhchenko A., Kuchmizhak A., Dostovalov A. Regulating morphology and composition of laser-induced periodic structures on titanium films with femtosecond laser wavelength and ambient environment. Nanomaterials, 2022, 12 (3), 306.

19. Bad´ıa-Majos A., Mart ´ ´ınez E., Angurel L.A., de la Fuente G.F., Fourneau E., Marinkovic S., Silhanek A.V. Laser nanostructured metasurfaces in ´ Nb superconducting thin films. Applied Surface Science, 2024, 649, 159164.

20. Xu L., Geng J., Shi L., Cui W., Qiu M. Impact of film thickness in laser-induced periodic structures on amorphous Si films. Frontiers of Optoelectronics, 2023, 16 (1), 16.

21. Fraggelakis F., Lingos P., Tsibidis G.D., Cusworth E., Kay N., Fumagalli L., Kravets V.G., Grigorenko A.N., Kabashin A.V., Stratakis E. DoublePulse Femtosecond Laser Fabrication of Highly Ordered Periodic Structures on Au Thin Films Enabling Low-Cost Plasmonic Applications. ACS Nano, 2025, 19 (25), P. 23258–23275.

22. Derrien T.J.-Y., Kruger J., Bonse J. Properties of surface plasmon polaritons on lossy materials: lifetimes, periods and excitation conditions. ¨ J. of Optics, 2016, 18 (11), 115007.

23. Johnson P.B., Christy R.W. Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd. Physical Review B, 1974, 9 (12), P. 5056–5070.

24. Libenson M.N. Laser-induced optical and thermal processes in condensed matter and their mutual influence. Nauka Publisher, St. Petersburg, 2007. 423 p. (in Russian).

25. Malitson X.I.H. Interspecimen comparison of the refractive index of fused silica. J. of the Optical Society of America, 1965, 55 (10), P. 1205–1209.

26. Devore J.R. Refractive indices of rutile and sphalerite. J. of the Optical Society of America, 1951, 41 (6), P. 416–419.


Review

For citations:


Khramov A.S., Vasilev M.D., Sinev D.A., Shakhno E.A. Subwavelength LIPSS-based nanopatterning of thin titanium films. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(6):755-762. https://doi.org/10.17586/2220-8054-2025-16-6-755-762

Views: 20


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)