PVP-stabilized tungsten oxide nanoparticles inhibit proliferation of NCTC L929 mouse fibroblasts via induction of intracellular oxidative stress
https://doi.org/10.17586/2220-8054-2019-10-1-92-101
Аннотация
In this study, photochromic PVP-stabilized tungsten oxide nanoparticles (WO3-x NPs) were shown to exhibit a dose-dependent cytotoxic effect on mouse fibroblasts in vitro. WO3-x NPs reduce viability and proliferative activity of the cells via induction of intracellular oxidative stress leading to apoptosis and cell death. WO3-x NPs modulate the mRNA expression of a wide range of genes responsible for oxidative stress and the cell redox-system.
Об авторах
A. PopovРоссия
A. Ermakov
Россия
T. Shekunova
Россия
A. Shcherbakov
Украина
O. Ermakova
Россия
O. Ivanova
Россия
N. Popova
Россия
A. Baranchikov
Россия
V. Ivanov
Россия
Список литературы
1. Firouzi M., Poursalehi R., et al. Chitosan coated tungsten trioxide nanoparticles as a contrast agent for X-ray computed tomography. Int. J. Biol. Macromol., 2017, 98, P. 479–485.
2. Popov A.L., Savintseva I.V., et al. Cytotoxicity analysis of gadolinium doped cerium oxide nanoparticles on human mesenchymal stem cells. Nanosyst. Phys. Chem. Math., 2018, 9 (3), P. 430–438.
3. Popov A.L., Shcherbakov A.B., et al. Cerium dioxide nanoparticles as third-generation enzymes (Nanozymes). Nanosyst. Phys. Chem. Math., 2017, 8 (6), P. 760–781.
4. Popova N.R., Popov A.L., Shcherbakov A.B., Ivanov V.K. Layer-by-layer capsules as smart delivery systems of CeO2 nanoparticle-based theranostic agents. Nanosyst. Phys. Chem. Math., 2017, 8 (2), P. 282–289.
5. Popov A.L., Popova N.R., et al. Cerium oxide nanoparticles stimulate proliferation of primary mouse embryonic fibroblasts in vitro. Mater. Sci. Eng., C, 2016, 68, P. 406–413.
6. Hosseini F., Rasuli R., Jafarian V. Immobilized WO3 nano-particles on graphene oxide as a photo-induced antibacterial agent against UV resistant Bacillus Pumilus. J. Phys. D: Appl. Phys., 2018, 51 (14), 145403.
7. Hariharan V., Radhakrishnan S., et al. Synthesis of polyethylene glycol (PEG) assisted tungsten oxide (WO3) nanoparticles for L-dopa bio-sensing applications. Talanta, 2011, 85 (4), P. 2166–2174.
8. Deng K., Hou Z., et al. Enhanced Antitumor Efficacy by 808 nm Laser-Induced Synergistic Photothermal and Photodynamic Therapy Based on a Indocyanine-Green-Attached W18O49 Nanostructure. Adv. Funct. Mater., 2015, 25 (47), P. 7280–7290.
9. Chen Z., Wang Q., et al. Ultrathin PEGylated W18O49 nanowires as a new 980 nm-laser-driven photothermal agent for efficient ablation of cancer cells in vivo. Adv. Mater., 2013, 25 (14), P. 2095–2100.
10. Sharker S.Md., Kim S.M., et al. Functionalized biocompatible WO3 nanoparticles for triggered and targeted in vitro and in vivo photothermal therapy. J. Control. Release, 2015, 217, P. 211–220.
11. Zhou Z., Kong B., et al. Tungsten Oxide Nanorods: An Efficient Nanoplatform for Tumor CT Imaging and Photothermal Therapy. Sci. Rep., 2014, 4, 3653.
12. Liu J., Han J., et al. In vivo near-infrared photothermal therapy and computed tomography imaging of cancer cells using novel tungstenbased theranostic probe. Nanoscale, 2014, 6 (11), P. 5770–5776.
13. Liu P., Wang Y., et al. Ultrasmall WO3−x@γ-poly-l-glutamic Acid Nanoparticles as a Photoacoustic Imaging and Effective PhotothermalEnhanced Chemodynamic Therapy Agent for Cancer. ACS Appl. Mater. Interfaces, 2018, 10 (45), P. 38833–3884.
14. AbuMousa R.A., Baig U., et al. Photo-catalytic Killing of HeLa Cancer Cells Using Facile Synthesized Pure and Ag Loaded WO3 Nanoparticles. Sci. Rep., 2018, 8, 15224.
15. Popov A., Zholobak N., et al. Photo-induced toxicity of tungsten oxide photochromic nanoparticles. J. Photochem. Photobiol. B, 2018, 178, P. 395–403.
Рецензия
Для цитирования:
, , , , , , , , . Наносистемы: физика, химия, математика. 2019;10(1):92-101. https://doi.org/10.17586/2220-8054-2019-10-1-92-101
For citation:
Popov A.L., Ermakov A.M., Shekunova T.O., Shcherbakov A.B., Ermakova O.N., Ivanova O.S., Popova N.R., Baranchikov A.Ye., Ivanov V.K. PVP-stabilized tungsten oxide nanoparticles inhibit proliferation of NCTC L929 mouse fibroblasts via induction of intracellular oxidative stress. Nanosystems: Physics, Chemistry, Mathematics. 2019;10(1):92-101. https://doi.org/10.17586/2220-8054-2019-10-1-92-101