Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

1-bit and 2-bit comparator designs and analysis for quantum-dot cellular automata

https://doi.org/10.17586/2220-8054-2017-8-6-709-716

Abstract

In PCs, the number of arithmetic operations, the comparator is a vital equipment unit, consisting of complementary metal-oxide-semiconductor (CMOS) technology. Another procedure, referred to as Quantum Cellular Automata (QCA) will supplant the CMOS outlines, having leverage concerning zone, control utilization, and latency. The primary QCA circuits planned with the inverter and majority voter entryways. In this paper, we utilize the clocking method 180 out of phase clock crossover to outline the 1-bit comparator and compare with the current outcomes. The new proposed wire crossing plan lessens the quantity of cells required to configuration, power and area necessities. Additionally, we planned 2-bit comparator having 11 majority gates (voters), 2 number of crossovers with 0.38 µm2 area, 203 number of cells. The designed 1-bit comparator contrast and the past outcomes where cells, region, delay demonstrates 53.57 %, 50 % and 33.32 % improvement respectively.

About the Authors

A. Mallaiah
Research Scholar, JNTUA
India

Anthapuramu, A.P



G. N. Swamy
Department of EI&E, VR Siddhartha Engineering College
India

Vijayawada, A.P



K. Padmapriya
Department of ECE, JNTUK
India

Kakinada, A.P



References

1. Walus K., Dysart T., Jullien G., Budiman R. QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol., 2004, 3(1), P. 26–29.

2. Vetteth A., Walus K., Dimitrov V.S., Jullien G.A. Quantum-dot cellular automata of flip-flops. Proceedings of the 2003 National Conference on Communications (NCC 2003), 2003, P. 368–372.

3. Cho H., Swartzlander E.E. Adder and multiplier designs in quantum-dot cellular automata. IEEE Trans. Comput., 2009, 58(6), P. 721–727.

4. Walus K., Schulhof G., Jullien G. Implementation of a simulation engine for clocked molecular QCA, in IEEE Canadian Conference on Electrical and Computer Engineering (CCECE’06), 2006, P. 2128–2131.

5. Cho H., Swartzlander E.E. Adder designs and analyses for quantum-dot cellular automata. IEEE Trans. Nanotechnol., 2007, 6(3), P. 374–383.

6. Flood A.H., et al. Whence Molecular Electronics. Science, 2004, 306(5704), P. 2055–2056.

7. Heath J.R., Ratner M.A. Molecular Electronics. Physics Today, 2003, P. 43–49.

8. Chen Y., et al. Nanoscale molecular-switch devices fabricated by imprint lithography. Applied Physics Letter, 2003, 82(10), P. 1610–1612.

9. Steuerman D.W., et al. Molecular-Mechanical Switch-Based Solid-State Electrochromic Devices. Angewandte Chemie International Edition, 2004, 43(47), P. 6486–6491.

10. Hadley P. Single-Electron Tunneling Devices, AIP conference proceedings 427, 1998, P. 256–270.

11. Tahoori M.B., Momenzadeh M., Huang J., Lombardi F. Defects and Faults in Quantum-Dot Cellular Automata. VLSI Test Symposium (VTS), 2004, P. 291–296.

12. Berzon D., Fountain T.J. A Memory Design in QCAs Using the SQUARES Formalism. Proceedings Ninth Great Lakes Symposium on VLSI, 1999, P. 166–169.

13. Orlov A.O., et al. Experimental Demonstration of Clocked Single-electron Switching in Quantum-dot Cellular Automata. Applied Physics Letters, 2000, 77(2), P. 295–297.

14. Jiao J., et al. Building Blocking for the Molecular Expression of QCA. Isolation and Characterization of a Covalently Bounded Square Array of two Ferrocenium and Two Ferrocene Complexes.

15. Qi H., et al. Molecular Quantum Cellular Automata Cells: Electric Field Driven Switching of a Silicon Surface Bound Array of Vertically Oriented Two-Dot Molecular QCA. Journal of the Am.Chem. Society, (JACS Articles), 2003, 125(49), P. 15250–15259.

16. Antonelli D.A., et al. Quantum-Dot Cellular Automata (QCA) Circuit Partitioning: Problem Modeling and Solutions. Design Automation Conference (DAC), 2004, P. 363–368.

17. McCluskey E. Logic Design Principles, Englewood Cliffs. NJ: Prentice-Hall, 1986.

18. Lent C.S., Tougaw P.D., Porod W. Bistable saturation in coupled quantum dots for quantum cellular automata. Appl. Phys. Lett., 1993, 62, P. 714–716.

19. Lent C.S., Tougaw P.D., Porod W., Bernstein G.H. Quantum cellular automata. Nanotechnology, 1993, 4(1), P. 49–58.

20. Angizi S., Alkaldy E., Bagherzadeh N., Navi K. Novel robust single layer wire crossing approach for exclusive OR sum of products logic design with quantum-dot cellular automata. J.Low Power Electron, 2014, 10, P. 259–271.

21. Sheikhfaal S., Angizi S., Sarmadi S., Hossein Moaiyeri M., Sayedsalehi S., Designing efficient QCA logical circuits with power dissipation analysis. Microelectron. J., 2015, 46, P. 462–471.

22. Dallaki H., Mehran M. Novel subtractor design based on quantum-dot cellular automata (QCA) nanotechnology. Int. J. Nanosci. Nan- otechnol., 2015, 11, P. 257–262.

23. Singh G., Sarin R.K., Raj B. A novel robust exclusive-OR function implementation in QCA nanotechnology with energy dissipation analysis. J. Comput. Electron, 2016, 15, P. 455–465.

24. Das J.C., De D. Reversible Comparator Design Using Quantum Dot-Cellular Automata. IETE Journal of Research, 2016, 62 (3).

25. Abdullah-Al-Shafi M., Bahar A.N. Optimized design and performance analysis of novel comparator and full adder in nanoscale. Cogent Engineering, 2016, 3 (1).

26. Xia Y.-S., Qiu K.-M. Comparator Design Based on Quantum-Dot Cellular Automata, Journal of Electronics & Information Technology, 2009, 31, P. 1517–1520.

27. Walus K., Dysart T.J., Jullien G.A., Budiman R.A. QCADesigner: a rapid design and Simulation tool for quantum-dot cellular automata. IEEE Transactions on Nanotechnology, 2004, 3, P. 26–31.


Review

For citations:


Mallaiah A., Swamy G.N., Padmapriya K. 1-bit and 2-bit comparator designs and analysis for quantum-dot cellular automata. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(6):709-716. https://doi.org/10.17586/2220-8054-2017-8-6-709-716

Views: 5


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)