Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

A new efficient non-reversible 4 bit binary to gray and 4 bit gray to binary converter in QCA

https://doi.org/10.17586/2220-8054-2018-9-4-473-483

Abstract

The present Very Large Scale Integration (VLSI) technology is based on Complementary Metal-oxide-Semiconductor (CMOS) technology. The development of the VLSI technology has reached its peak due to the fundamental physical limits of CMOS technology. The recent challenges, as well as the physical limitation of the traditional CMOS technology, has overcome by the Quantum-dot Cellular Automata (QCA) which is first introduced by C. S. Lent. The nanoscale size quantum cell is a feature of QCA technology. In this paper, we propose a new QCA structure for 4-bit binary to 4-bit gray and 4-bit gray to 4-bit binary using two input XOR gate. These structures are designed and simulated with QCA designer and compared with previous structure.

About the Authors

Md. T. Islam
Mawlana Bhashani Science and Technology University
Bangladesh

Md. Tajul Islam, Department of Information and Communication Technology

Santosh, Tangail-1902



G. S. Jahan
Mawlana Bhashani Science and Technology University
Bangladesh

Golam Sarwar Jahan, Department of Information and Communication Technology

Santosh, Tangail-1902



A. N. Bahar
Mawlana Bhashani Science and Technology University
Bangladesh

Ali Newaz Bahar, Department of Information and Communication Technology

Santosh, Tangail-1902



K. Ahmed
Mawlana Bhashani Science and Technology University
Bangladesh

Kawsar Ahmed, Department of Information and Communication Technology

Santosh, Tangail-1902



Md. Abdullah-Al-Shafi
Institute of Information Technology (IIT), University of Dhaka
Bangladesh

Dhaka-1000



References

1. Lent C.S., Tougaw P.D., Porod W., Bernstein G.H. Quantum cellular automata. Nanotechnology, 1993, 4 (1), P. 49–57.

2. Cho H., Swartzlander Jr. E.E. Adder and multiplier design in quantum-dot cellular automata. IEEE Transactions on Computers, 2009, 58 (6), P. 721–727.

3. Schaller R.R. Moore’s law: past, present and future. IEEE spectrum, 1997, 34 (6), P. 52–59.

4. Niemier M.T. Designing digital systems in quantum cellular automata. PhD diss., University of Notre Dame, 2000.

5. Orlov A.O., Amlani I., et al. Realization of a functional cell for quantum-dot cellular automata. Science, 1997, 277 (5328), P. 928–930.

6. Tahoori M.B., Momenzadeh M., Huang J., Lombardi F. Defects and faults in quantum cellular automata at nano scale. IEEE, 2004, P. 291.

7. Snider G.L., Orlov A.O., et al. Quantum-dot cellular automata. Journal of Vacuum Science & Technology A, 1999, 17 (4), P. 1394–1398.

8. Thapliyal H., Ranganathan N., Kotiyal S. Design of testable reversible sequential circuits. IEEE Transactions on Very Large Scale Integration Systems, 2013, 21 (7), P. 1201–1209.

9. Mallaiah A., Swamy G.N., Padmapriya K. 1 bit and 2 bit comparator designs and analysis for quantumdot cellular automata. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8 (6), P. 709–716.

10. Bahar A.N., Waheed S., Habib M.A. A novel presentation of reversible logic gate in Quantum-dot Cellular Automata (QCA). International Conference on Electrical Engineering and Information Communication Technology, 2014, 14651168.

11. Islam S.S., Farzana S., Bahar A.N. Area efficient layout design of Multiply Complements Logic (MCL) gate using QCA Technology. Global Journal of Research In Engineering, 2014, 14 (4), P. 7–10.

12. Bahar A.N., Waheed S., Hossain N. A new approach of presenting reversible logic gate in nanoscale. Springer Plus, 2015, 4 (1), P. 153.

13. Abdullah-Al-Shafi M., Bahar A.N. QCA: An effective approach to implement logic circuit in nanoscale. International Conference on Informatics, Electronics and Vision, 2016, P. 620–624.

14. Bahar A.N., Waheed S. Design and implementation of an efficient single layer five input majority voter gate in quantum-dot cellular automata. Springer Plus, 2016, 5 (1), P. 636.

15. Abdullah-Al-Shafi M., Bahar A.N. Optimized design and performance analysis of novel comparator and full adder in nanoscale. Cogent Engineering, 2016, 3 (1), 1237864.

16. Biswas P.K., Bahar A.N., et al. An Efficient Design of Reversible Subtractor in Quantum-Dot Cellular Automata. International Journal of Grid and Distributed Computing, 2017, 10 (5), P. 13–24.

17. Heikalabad S.R., Navin A.H., Hosseinzadeh M. Content addressable memory cell in quantum-dot cellular automata. Microelectronic Engineering, 2016, 163, P. 140–150.

18. Heikalabad S.R., Navin A.H., Hosseinzadeh M., Oladghaffari T. Midpoint memory: a special memory structure for data-oriented models implementation. Journal of Circuits, Systems and Computers, 2015, 24 (05), 1550063.

19. Rao N.G., Srikanth P.C., Sharan P. A novel quantum-dot cellular automata for 4-bit code converters. Optik – International Journal for Light and Electron Optics, 2016, 127 (10), P. 4246–4249.

20. Beigh M.R., Mustafa M. Design and simulation of efficient code converter circuits for Quantum-Dot cellular automata. Journal of Computational and Theoretical Nanoscience, 2014, 11 (12), P. 2564–2569.

21. Chaithanya P., Ramesh B., Srujana V., Vikram V. Implementation of Efficient Binary To Gray Code Converter Using Quantum Dot Cellular Automata. International Journal for Research in Applied Science and Engineering Technology, 2017, 5 (9), P. 522-529.

22. Islam S., Abdullah-Al-Shafi M.O.H.A.M.M.A.D., Bahar A.N. Implementation of Binary to Gray code Converters in Quantum Dot Cellular Automata. Journal of Today’s Ideas – Tomorrow’s Technologies, 2015, 3 (2), P. 145–160.

23. Timler J., Lent C.S. Power gain and dissipation in quantum-dot cellular automata. Journal of applied physics, 2002, 91 (2), P. 823–831.

24. Srivastava S., Sarkar S., Bhanja S. Estimation of upper bound of power dissipation in QCA circuits. IEEE transactions on nanotechnology, 2009, 8 (1), P. 116–127.

25. Srivastava S., Asthana A., Bhanja S., Sarkar S. QCAPro-an error-power estimation tool for QCA circuit design. Circuits and Systems, IEEE International Symposium, 2011, P. 2377–2380.

26. Reshi J.I., Banday M.T. Efficient design of nano scale adder and subtractor circuits using quantum dot cellular automata. International Conference on Electrical, Electronics, Engineering Trends, Communication, Optimization and Sciences, 2016, 17693881.

27. Abdullah-Al-Shafi M., Bahar A.N. Novel binary to gray code converters in QCA with power dissipation analysis. International Journal of Multimedia and Ubiquitous Engineering, 2016, 11 (8), P. 379–396.

28. Bahar A.N., Rahman M.M., Nahid N.M., Hassan M.K. Energy dissipation dataset for reversible logic gates in quantum dot-cellular automata. Data in Brief, 2017, 10, P. 557–560.

29. Bahar A.N., Uddin M.S., et al. Designing efficient QCA even parity generator circuits with power dissipation analysis. Alexandria Engineering Journal, 2017, In Press, https://doi.org/10.1016/j.aej.2017.02.002.


Review

For citations:


Islam M.T., Jahan G.S., Bahar A.N., Ahmed K., Abdullah-Al-Shafi M. A new efficient non-reversible 4 bit binary to gray and 4 bit gray to binary converter in QCA. Nanosystems: Physics, Chemistry, Mathematics. 2018;9(4):473-483. https://doi.org/10.17586/2220-8054-2018-9-4-473-483

Views: 8


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)