Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search
Vol 5, No 2 (2014)

PHYSICS

210–216 3
Abstract

The optical induction of 3D rotational symmetry refractive lattices in doubly doped photorefractive and photochromic LiNbO3:Fe:Cu crystal by combined interferometric-mask method was performed. The method is based on the spatial light modulation by amplitude mask in the transverse plane and the use of counter-propagating beam geometry building up a Gaussian standing wave, which defines the light intensity modulation in the axial direction with half-wavelength periodicity. Masks with rotationally symmetrical structures are used in the experiment. The created intensity pattern was imparted into the LiNbO3:Fe:Cu crystal thus creating refractive lattice with the periods of 20 – 60 µm in the radial and azimuthal directions and 266 nm in the axial direction. The refractive and dispersive properties of the recorded lattices were studied.

217–233 5
Abstract

A low-temperature study has been performed for aqueous shungite, carbon tetrachloride, and toluene dispersions. Spectral characteristics for graphene quantum dots (GQDs) of shungite, attributed to individual fragments of reduced graphene oxide (rGO), reveal a dual character of the dispersions emitting centers: individual GQDs are responsible for the spectra position while fractal structure of GQD colloids provides large broadening of the spectra due to structural inhomogeneity of the colloidal dispersions and a peculiar dependence of photoluminescence of dispersions on excitation wavelength. For the first time, photoluminescence spectra of individual GQDs were observed in frozen toluene dispersions, which pave the way for a theoretical treatment of GQDs photonics.

234–248 3
Abstract

We suggest the model of lattice low branch (LB) polaritons based on the array of weakly coupled microsize cavities, each containing a small but macroscopic number of two-level systems (qubits). We reveal various dynamical regimes, such as diffusive, self-trapped, breathing and solitonic for polariton wave packet propagation under tight-binding approximation. We focus our attention on the bright polariton soliton formation in a high quality cavity array emerging due to two-body polariton-polariton scattering processes that take place at each cavity under the qubit-light interaction. A physical algorithm for the spatially distributed storage of optical information where various dynamical LB polariton soliton states are used is proposed. This algorithm can be realized with the help of manipulating group velocity of a polariton soliton in the cavity array and obtained by smooth variation of qubit-light detuning.

249–257 2
Abstract

In this paper we studied the possibility of the appearance of surface plasmon polaritons at the plasma/dielectric interface with rapidly generated plasma in the right half- space, when the field is generated by a plane source, was studied. The source was located parallel to the interface, and at an angle to it. It was shown that the frequency-converted wave outgoing from plasma boundary corresponds to the plasmon polariton in the case when the initial field is generated by the plane source located at the angle α to the plasma boundary for the following condition.

CHEMISTRY AND MATERIALS SCIENCE

258–293 1
Abstract

An analysis is presented for the possibility of metal dispersion, driven by the development of thermodynamic instabilities of its physical state in the vicinity of the critical point in an electrical explosion of conductors (EEC). A new geometrical configuration of conductors, arranged in a thin-walled cylindrical shell on a rigid dielectric cylinder with axially guided, internal return current is proposed. This constrains the part played by instabilities of non-thermodynamic origin and provides the required power density distributed uniformly in the conductor. For metals of the aluminum and copper type, the rates of heating have been estimated, which ensure homogeneous vaporization as the key factor governing the mechanism of liquid metal dispersion during the development of thermodynamic instabilities in the material. Directions in which magnetohydrodynamic (MHD) modeling of high-power electrical discharge in EEC should be pursued in the development of optimal regimes for energy injection into the conductor are outlined. Processes governing condensation of explosion products in an aqueous environment in the case of the particles being electrically charged and involved in chemical interaction with supercritical fluids have been analyzed. The method of synthesis proposed will eventually permit the production of oxide nanoparticles which differ from nanoparticles of the same oxides synthesized in electrical discharge in air and other oxygen-containing gas media, as well as in hydrothermal synthesis employed in its classical methodological implementation.

294–306 2
Abstract

Ultrasonic exfoliation of expanded graphite compound obtained by cold expansion of graphite intercalated with peroxodisulfuric acid was shown to allow the creation of graphene nanoplatelets with thickness of about 5-10 nm. The resulting graphene material contained surface oxide groups. The expanded graphite intercalation compound was exfoliated by ultrasound much easier than thermally expanded graphite. A mechanism for the cleavage of graphite to graphene nanoplatelets is proposed. It includes: (1) formation of ionic graphite compound intercalated with peroxodisulfate anions; (2) decomposition of intercalated peroxodisulfate anions with formation of active free radicals which (3) attach covalently to carbon atoms; (4) cleavage and expansion of the graphite crystal due to the thickening of the peripheral region of graphene layers and release of gaseous oxygen between graphene layers; (5) hydrolysis of the expanded graphite compound; and, finally, (6) ultrasonic breaking of graphene nanoplatelet agglomerates.

307–314 2
Abstract

A VxOy/InP structure was formed by the deposition of a V2O5 gel aerosol on an InP surface, followed by thermal annealing. This approach avoids chemostimulator interactions with the substrate prior to thermal oxidation, which is characteristic of ‘hard’ methods of chemostimulator deposition. The oxidation process of such structures occurs in the transit mechanism with a slight increase growth rate of films by 20–40 % in comparison with the oxidation of InP. The transit action of chemostimulator has been associated with the chemical bonding of V2O5 into InVO4 (XRD), which predominates over mutual transformations of vanadium oxide, which forms in different oxidation states.

315–319 1
Abstract

The water soluble tris-malonate adduct of light fullerene – C60[=C(COOH)2]3 was produced in laboratory quantities. The product was identified by several analytical methods: elementary H–C–O–N analysis, IR-, Electronic, NMR- Spectroscopy, Mass Spectrometry.



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)