03

NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2013, 4 (4), P. 474–483

ON THE ASYMPTOTICS OF THE PRINCIPAL EIGENVALUE FOR A ROBIN PROBLEM WITH A LARGE PARAMETER IN PLANAR DOMAINS

Konstantin Pankrashkin – Laboratoire de mathématiques – UMR 8628, Université Paris-Sud, Bâtiment 425, 91405 Orsay Cedex, France; konstantin.pankrashkin@math.u-psud.fr

http://www.math.u-psud.fr/~pankrash/

Let Ω⊂R2 be a domain having a compact boundary Σ which is Lipschitz and piecewise C4 smooth, and let ν denote the inward unit normal vector on Σ. We study the principal eigenvalue E(β) of the Laplacian in Ω with the Robin boundary conditions ∂f /∂ν + βf = 0 on Σ, where β is a positive number. Assuming that Σ has no convex corners, we show the estimate E(β) = −β2− γmaxβ + O(β) as β → +∞, where γmax is the maximal curvature of the boundary.

Keywords: eigenvalue, Laplacian, Robin boundary condition, curvature, asymptotics.

PACS 41.20.Cv, 02.30.Jr, 02.30.Tb

Download

1 response to 03


  1. Hey there, You have done a great job. I will definitely digg it and individually suggest to my friends. I am sure they’ll be benefited from this website.

Leave a Reply

Your email address will not be published.

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>