NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2016, 7 (5), P. 789–802
On resonances and bound states of Smilansky Hamiltonian
P. Exner – Nuclear Physics Institute, Czech Academy of Sciences, 25068 Řež, Czech Republic; exner@ujf.cas.cz
V. Lotoreichik – Nuclear Physics Institute, Czech Academy of Sciences, 25068 Řež, Czech Republic; lotoreichik@ujf.cas.cz
M. Tater – Nuclear Physics Institute, Czech Academy of Sciences, 25068 Řež, Czech Republic; tater@ujf.cas.cz
We consider the self-adjoint Smilansky Hamiltonian Hε in L2 R2) associated with the formal differential expression -∂x2-1/2(∂y2+y2)-√2εyδ(x) in the sub-critical regime, ε∈(0, 1). We demonstrate the existence of resonances for Hε on a countable subfamily of sheets of the underlying Riemann surface whose distance from the physical sheet is finite. On such sheets, we find resonance free regions and characterize resonances for small ε > 0. In addition, we refine the previously known results on the bound states of Hε in the weak coupling regime (ε→0+). In the proofs we use Birman-Schwinger principle for Hε, elements of spectral theory for Jacobi matrices, and the analytic implicit function theorem.
Keywords: Smilansky Hamiltonian, resonances, resonance free region, weak coupling asymptotics, Riemann surface, bound states.
PACS 02.30.Tb, 03.65.Db
DOI 10.17586/2220-8054-2016-7-5-789-802
When I originally commented I clicked the -Notify me when new feedback are added- checkbox and now every time a remark is added I get four emails with the identical comment. Is there any way you may take away me from that service? Thanks!
https://pinupaz.bid/# pin-up casino giris pinup azerbaycan
https://amoxil.llc/# generic amoxicillin online
https://zithromax.company/# zithromax tablets
https://stromectol.agency/# buy minocycline 50 mg otc
https://gabapentin.auction/# buy neurontin online no prescription
https://gabapentin.auction/# neurontin 50mg tablets
http://stromectol.agency/# ivermectin 1 topical cream