03

NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2016, 7 (5), P. 803–815

Spectral properties of a symmetric three-dimensional quantum dot with a pair of identical attractive δ-impurities symmetrically situated around the origin II

S. Albeverio – Institut für Angewandte Mathematik, HCM, IZKS, BiBoS, Universität Bonn, Endenicheralee 60, D-53115, Bonn, Germany; CERFIM, PO Box 1132, CH6601, Locarno, Switzerland; Chair Professorship, Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, Dhahran, KSA
S. Fassari – CERFIM, PO Box 1132, CH6601, Locarno, Switzerland; Università degli Studi Guglielmo Marconi, Via Plinio 44, I-00193, Rome, Italy; sifassari@gmail.com
F. Rinaldi – CERFIM, PO Box 1132, CH6601, Locarno, Switzerland; Università degli Studi Guglielmo Marconi, Via Plinio 44, I-00193, Rome, Italy

In this note, we continue our analysis (started in [1]) of the isotropic three-dimensional harmonic oscillator perturbed by a pair of identical attractive point interactions symmetrically situated with respect to the origin, that is to say, the mathematical model describing a symmetric quantum dot with a pair of point impurities. In particular, by making the coupling constant (to be renormalized) dependent also upon the separation distance between the two impurities, we prove that it is possible to rigorously define the unique self-adjoint Hamiltonian that, differently from the one introduced in [1], behaves smoothly as the separation distance between the impurities shrinks to zero. In fact, we rigorously prove that the Hamiltonian introduced in this note converges in the norm-resolvent sense to that of the isotropic three-dimensional harmonic oscillator perturbed by a single attractive point interaction situated at the origin having double strength, thus making this three-dimensional model more similar to its one-dimensional analog (not requiring the renormalization procedure) as well as to the three-dimensional model involving impurities given by potentials whose range may even be physically very short but different from zero. Moreover, we show the manifestation of the Zeldovich effect, known also as level rearrangement, in the model investigated herewith. More precisely, we take advantage of our renormalization procedure to demonstrate the possibility of using the concept of ‘Zeldovich spiral’, introduced in the case of perturbations given by rapidly decaying potentials, also in the case of point perturbations.

Keywords: level crossing, degeneracy, point interactions, renormalisation, Schrödinger operators, quantum dots, perturbed quantum oscillators, Zeldovich effect, level rearrangement.

PACS 02.30.Gp, 02.30.Hq, 02.30.Hq, 02.30.Lt, 02.30.Sa, 02.30.Tb, 03.65.Db, 03.65.Ge, 68.65.Hb

DOI 10.17586/2220-8054-2016-7-5-803-815

Download

14 responses to 03


  1. Excellent post. I used to be checking constantly this blog and I’m impressed! Very useful info specially the ultimate part :) I care for such info much. I used to be seeking this particular info for a long time. Thanks and good luck.

  2. Edgarmah

    pinup az: pin-up kazino – pin-up casino giris

  3. Williamsed

    http://pinupaz.bid/# pinup azerbaycan pin-up kazino

  4. Nicolasgal

    https://amoxil.llc/# buy amoxicillin 500mg capsules uk

  5. Nicolasgal

    https://gabapentin.auction/# drug neurontin 200 mg

  6. Nicolasgal

    http://gabapentin.auction/# neurontin for sale

  7. Nicolasgal

    https://amoxil.llc/# buying amoxicillin online

  8. Nicolasgal

    http://zithromax.company/# zithromax 500 mg lowest price drugstore online

  9. Nicolasgal

    http://semaglutide.win/# rybelsus generic

  10. Nicolasgal

    https://gabapentin.auction/# buy brand neurontin

  11. Nicolasgal

    https://zithromax.company/# buy zithromax 1000 mg online

  12. Nicolasgal

    https://zithromax.company/# azithromycin zithromax

Leave a Reply

Your email address will not be published.

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>