08

NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2017, 8 (2), P. 216–230

Unique continuation principles and their absence for Schrödinger eigenfunctions on combinatorial and quantum graphs and in continuum space

N. Peyerimhoff – Department of Mathematical Sciences, Durham University, UK; norbert.peyerimhoff@durham.ac.uk
M. Täufer – Fakultät für Mathematik, Technische Universität Dortmund, Germany; mtaeufer@math.tudortmund.de
I. Veselić – Fakultät für Mathematik, Technische Universität Dortmund, Germany; iveselic@math.tudortmund.de

For the analysis of the Schrödinger and related equations it is of central importance whether a unique continuation principle (UCP) holds or not. In continuum Euclidean space, quantitative forms of unique continuation imply Wegner estimates and regularity properties of the integrated density of states (IDS) of Schrödinger operators with random potentials. For discrete Schrödinger equations on the lattice, only a weak analog of the UCP holds, but it is sufficient to guarantee the continuity of the IDS. For other combinatorial graphs, this is no longer true. Similarly, for quantum graphs the UCP does not hold in general and consequently, the IDS does not need to be continuous.

Keywords: eigenfunctions, unique continuation, Schrödinger equation, Wegner estimate, Integrated density of states.

DOI 10.17586/2220-8054-2017-8-2-216-230

Download

Comments are closed.