NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2018, 9 (2), P. 162–170
Solvable models of quantum beating
R. Carlone – Universitá “Federico II” di Napoli, Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, MSA, via Cinthia, I-80126, Napoli, Italy; raffaele.carlone@unina.it
R. Figari – Universitá “Federico II” di Napoli, Dipartimento di Fisica e INFN Sezione di Napoli, MSA, via Cinthia, I-80126, Napoli, Italy; rodolfo.figari@na.infn.it
C. Negulescu – Université de Toulouse & CNRS, UPS, Institut de Mathématiques de Toulouse UMR 5219 F-31062, Toulouse, France; claudia.negulescu@math.univtoulouse.fr
L. Tentarelli – Sapienza Universitá di Roma, Dipartimento di Matematica, Piazzale Aldo Moro, 5, 00185, Roma, Italy; tentarelli@mat.uniroma1.it
We review some results about the suppression of quantum beating in a one dimensional nonlinear double well potential. We implement a single particle double well potential model, making use of nonlinear point interactions. We show that there is complete suppression of the typical beating phenomenon characterizing the linear quantum case.
Keywords: non-linear Schrödinger equation, weakly singular Volterra integral equations, quantum beating.
PACS 03.65.-w, 02.30.Rz
DOI 10.17586/2220-8054-2018-9-2-162-170