04

NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2016, 7 (2), P. 315–323

Laplacians with singular perturbations supported on hypersurfaces

A. Mantile – Laboratoire de Mathématiques de Reims, EA4535 URCA, Fédération de Recherche ARC Mathématiques, FR 3399 CNRS, France; andrea.mantile@univreims.fr
A. Posilicano – DiSAT, Sezione di Matematica, Università dell’Insubria, via Valleggio 11, I22100 Como, Italy; andrea.posilicano@uninsubria.it

We review the main results of our recent work on singular perturbations supported on bounded hypersurfaces. Our approach consists in using the theory of self-adjoint extensions of restrictions to build self-adjoint realizations of the n-dimensional Laplacian with linear boundary conditions on (a relatively open part of) a compact hypersurface. This allows one to obtain Krein-like resolvent formulae where the reference operator coincides with the free self-adjoint Laplacian in Rn, providing in this way with an useful tool for the scattering problem from a hypersurface. As examples of this construction, we consider the cases of Dirichlet and Neumann boundary conditions assigned on an unclosed hypersurface.

Keywords: Krein’s resolvent formula, boundary conditions, self-adjoint extensions.

PACS 02.30.Tb, 02.30.Jr

DOI 10.17586/2220-8054-2016-7-2-315-323

Download

4 responses to 04


  1. F*ckin¦ amazing things here. I¦m very happy to peer your article. Thank you a lot and i am looking forward to touch you. Will you kindly drop me a e-mail?

  2. Hi, Neat post. There’s a problem with your site in internet explorer, may test this?K IE still is the market chief and a big part of people will miss your great writing because of this problem.

  3. Hi, i read your blog occasionally and i own a similar one and i was just curious if you get a lot of spam comments? If so how do you reduce it, any plugin or anything you can suggest? I get so much lately it’s driving me crazy so any help is very much appreciated.

  4. What’s Taking place i’m new to this, I stumbled upon this I’ve discovered It absolutely useful and it has helped me out loads. I am hoping to give a contribution & aid other customers like its aided me. Good job.

Leave a Reply

Your email address will not be published.

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>